Abstract: An optimal condition is disclosed in which a composition of a soft magnetic molding solution includes 94 to 98 wt % of a soft magnetic powder and 2 to 6 wt % of an organic vehicle, in order to manufacture a coil-embedded inductor having various advantages such as high inductance, a low core loss, and high reliability. An exemplary manufacturing method is provided of a coil-embedded inductor having a structure in which a part of a coil is embedded in a magnetic core, which includes preparing an organic vehicle, preparing a soft magnetic molding solution having the density of 5.5 to 6.5 g/cc by mix-milling a soft magnetic powder with the organic vehicle, positioning and fixing a part of the coil in the case, and forming the magnetic core by injecting and curing the soft magnetic molding solution into the case.
Type:
Grant
Filed:
March 7, 2017
Date of Patent:
November 19, 2019
Assignee:
CHANG SUNG CO., LTD.
Inventors:
Tae Kyung Lee, Seung Nam Yang, Sung Jin Choi
Abstract: An optimal condition is disclosed in which a composition of a soft magnetic molding solution includes 94 to 98 wt % of a soft magnetic powder and 2 to 6 wt % of an organic vehicle, in order to manufacture a coil-embedded inductor having various advantages such as high inductance, a low core loss, and high reliability. An exemplary manufacturing method is provided of a coil-embedded inductor having a structure in which a part of a coil is embedded in a magnetic core, which includes preparing an organic vehicle, preparing a soft magnetic molding solution having the density of 5.5 to 6.5 g/cc by mix-milling a soft magnetic powder with the organic vehicle, positioning and fixing a part of the coil in the case, and forming the magnetic core by injecting and curing the soft magnetic molding solution into the case.
Type:
Application
Filed:
March 7, 2017
Publication date:
July 12, 2018
Applicant:
CHANG SUNG CO., LTD.
Inventors:
Tae Kyung LEE, Seung Nam YANG, Sung Jin CHOI