Abstract: A high-temperature forming device for imperfect single-crystal wafers used for a neutron monochromator includes a heating electric furnace, a temperature control system, a die system, a loading system, a vacuum protection system, and an auxiliary system. Where a furnace mouth of the heating electric furnace faces downwards, the heating electric furnace can be lifted vertically or a hearth of the heating electric furnace can be opened and closed. A vacuum protection cavity is formed by a glass cover and a blocking flange, a through hole is formed in one end of the glass cover, and the other end of the glass cover is closed. An operation opening is formed in the glass cover, the die system includes an upper die, a middle die, and a lower die, the middle die is a composite die.
Type:
Grant
Filed:
October 29, 2021
Date of Patent:
September 12, 2023
Assignee:
Changsha University of Science & Technology
Abstract: A high-temperature forming device for imperfect single-crystal wafers used for a neutron monochromator includes a heating electric furnace, a temperature control system, a die system, a loading system, a vacuum protection system, and an auxiliary system. Where a furnace mouth of the heating electric furnace faces downwards, the heating electric furnace can be lifted vertically or a hearth of the heating electric furnace can be opened and closed. A vacuum protection cavity is formed by a glass cover and a blocking flange, a through hole is formed in one end of the glass cover, and the other end of the glass cover is closed. An operation opening is formed in the glass cover, the die system includes an upper die, a middle die, and a lower die, the middle die is a composite die.
Type:
Application
Filed:
October 29, 2021
Publication date:
May 26, 2022
Applicant:
Changsha University of Science & Technology
Abstract: A mechanical ball-milling method for preparing a polydopamine-modified montmorillonite nanomaterial is disclosed. The method includes dispersing a montmorillonite material in an aqueous solution, stirring, concentrating and collecting a concentrated montmorillonite solution for use; adding dopamine hydrochloride to a buffer solution to prepare a dopamine hydrochloride solution, with a concentration of 0.2-1 g/mL, and adjusting the pH value of the dopamine hydrochloride solution; and adding the dopamine hydrochloride solution and the concentrated montmorillonite solution simultaneously into a ball mill jar to form a mixture, and then subjecting the mixture to a ball milling for 0.3-6 hours, pouring the mixture out of the ball mill jar, and subjecting to a solid-liquid separation by a centrifugation, and then washing a solid product with deionized water for 3-6 times, and removing water from the solid product, to obtain the polydopamine-modified montmorillonite nanomaterial.
Type:
Grant
Filed:
November 25, 2020
Date of Patent:
February 22, 2022
Assignee:
Changsha University of Science & Technology
Abstract: A method for dispatching a power system based on optimal load transfer ratio and optimal grid connection ratio of wind power and photovoltaic power includes: acquiring load data; drawing a load curve; defining a peak load period, a flat load period and a low load period, and calculating average loads of the peak load period, the flat load period and the low load period before a load transfer; determining value ranges of a peak-low load transfer ratio, a peak-flat load transfer ratio and a flat-low load transfer ratio; establishing an objective function considering generation cost of thermal power unit, wind power purchase cost, PV power purchase cost and compensation cost for consumer load transfer; introducing an immune algorithm to calculate grid connection ratio of wind power, grid connection ratio of PV power, peak-low load transfer ratio, peak-flat load transfer ratio and flat-low load ratio corresponding to a minimum operating cost.
Type:
Application
Filed:
August 6, 2020
Publication date:
February 11, 2021
Applicant:
Changsha University of Science & Technology
Abstract: A segmental joint of cast-in-place UHPC bridge beam. The joint comprises a female joints at an end of a first segment and male joints at an end of a second segment, wherein each female joints and the male joints are correspondingly connected to form a tongue-and-groove connection, and each of the male joints is of a structure with big outer part and small inner part. The beam segment joint of the present disclosure improves the structural strength of the bridge and facilitates on-site construction, which not only applies to the joint connection between the segmental cast-in-place UHPC beam segments and the construction of the segmental cast-in-place UHPC beam segment, but also to joint connection of UHPC bridge deck of UHPC-steel composite beam and of full UHPC bridge deck of UHPC composite box girder with corrugated steel webs and to UHPC bridge deck construction.
Type:
Grant
Filed:
January 16, 2019
Date of Patent:
May 5, 2020
Assignee:
Changsha University of Science & Technology