Patents Assigned to Chem-Space Associates, Inc.
  • Patent number: 9299553
    Abstract: A multiple function atmospheric pressure ion source interfaced to a mass spectrometer comprises multiple liquid inlet probes configured such that the sprays from two or more probes intersect in a mixing region. Gas phase sample ions or neutral species generated in the spray of one probe can react with reagent gas ions generated from one or more other probes by such ionization methods as Electrospray, photoionization, corona discharge and glow discharge ionization. Reagent ions may be optimally selected to promote such processes as Atmospheric Pressure Chemical Ionization of neutral sample molecules, or charge reduction or electron transfer dissociation of multiply charged sample ions. Selected neutral reagent species can also be introduced into the mixing region to promote charge reduction of multiply charged sample ions through ion-neutral reactions. Different operating modes can be performed alternately or simultaneously, and can be rapidly turned on and off under manual or software control.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: March 29, 2016
    Assignees: PerkinElmer Health Sciences, Inc., Chem-Space Associates, Inc.
    Inventors: Craig M. Whitehouse, Thomas P. White, Ross C. Willoughby, Edward William Sheehan
  • Publication number: 20140326871
    Abstract: A multiple function atmospheric pressure ion source interfaced to a mass spectrometer comprises multiple liquid inlet probes configured such that the sprays from two or more probes intersect in a mixing region Gas phase sample ions or neutral species generated in the spray of one probe can react with reagent gas ions generated from one or more other probes by such ionization methods as Electrospray, photoionization, corona discharge and glow discharge ionization. Reagent ions may be optimally selected to promote such processes as Atmospheric Pressure Chemical Ionization of neutral sample molecules, or charge reduction or electron transfer dissociation of multiply charged sample ions.
    Type: Application
    Filed: March 26, 2014
    Publication date: November 6, 2014
    Applicants: Chem-Space Associates, Inc., PerkinElmer Health Sciences, Inc.
    Inventors: Craig M. Whitehouse, Thomas P. White, Ross C. Willoughby, Edward William Sheehan
  • Patent number: 8723110
    Abstract: An apparatus for generating ions includes an Electrospray ionization source configured to provide a spray of charged droplets from a sample solution during operation of the apparatus; an atmospheric pressure chemical ionization (APCI) source including a corona discharge needle configured to produce a corona discharge that further ionizes the spray during operation of the apparatus; and a gas delivery system configured to deliver a gas flow to the corona discharge needle during operation of the apparatus, wherein the gas flow comprises a reagent ion gas which facilitates ionization of the spray by the corona discharge.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 13, 2014
    Assignees: PerkinElmer Health Sciences, Inc., Chem-Space Associates, Inc.
    Inventors: Craig M. Whitehouse, Thomas P. White, Ross C. Willoughby, Edward William Sheehan
  • Patent number: 8178833
    Abstract: An improved ion sampling tube designed to increase the amount of current delivered into the vacuum system of a mass spectrometer or other gas-phase ion or particle detectors or collectors. A device and method is disclosed that utilizes a tube with a high flow of ion entrained gas passing through the said tube. Said ions are directed from the tubular gas flow through an ion selective aperture and into an adjacent region and subsequently directed into a lower pressure region for detection or collection. The method is useful for enhancing the detection of analytes in solutions that are either nebulized or electrosprayed, and analytes present in gases. The method is also useful for isolating ionic species from the ion source from neutral gases and particles that may interfere or interact with analyte species. The method also decouples the high flow of the atmospheric pressure ion source from the low flow ion transmission into vacuum.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: May 15, 2012
    Assignee: Chem-Space Associates, Inc
    Inventors: Ross Clark Willoughby, Edward William Sheehan
  • Publication number: 20110309243
    Abstract: An apparatus for generating ions includes an Electrospray ionization source configured to provide a spray of charged droplets from a sample solution during operation of the apparatus; an atmospheric pressure chemical ionization (APCI) source including a corona discharge needle configured to produce a corona discharge that further ionizes the spray during operation of the apparatus; and a gas delivery system configured to deliver a gas flow to the corona discharge needle during operation of the apparatus, wherein the gas flow comprises a reagent ion gas which facilitates ionization of the spray by the corona discharge.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicants: CHEM-SPACE ASSOCIATES, INC., PERKINELMER HEALTH SCIENCES, INC.
    Inventors: Craig Whitehouse, Thomas White, Ross Willoughby, Ed Sheehan
  • Patent number: 7960711
    Abstract: An improved electrospray ion source for increasing the current generated from the electrospray process and of the type having a needle (10), a counter-electrode (20), a saddle or outer electrode (30), and concurrent flow of gas (92). A method and device is disclosed that utilizes a controlled electrospray nebulizer where an aerosol comprised of charged droplets and gas-phase ions is sprayed into a field-free or near field-free desolvation or reaction region (120).
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: June 14, 2011
    Assignee: Chem-Space Associates, Inc.
    Inventors: Edward William Sheehan, Ross Clark Willoughby
  • Patent number: 7816646
    Abstract: Atmospheric pressure, intermediate pressure and vacuum laser desorption ionization methods and ion sources are configured to increase ionization efficiency and the efficiency of transmitting ions to a mass to charge analyzer or ion mobility analyzer. An electric field is applied in the region of a sample target to accumulate ions generated from a local ion source on a solid or liquid phase sample prior to applying a laser desorption pulse. The electric field is changed just prior to or during the desorption laser pulse to promote the desorption of charged species and improve the ionization efficiency of desorbed sample species. After a delay, the electric field may be further changed to optimize focusing and transmission of ions into a mass spectrometer or ion mobility analyzer.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: October 19, 2010
    Assignees: Chem-Space Associates, Inc., PerkinElmer Health Sciences, Inc.
    Inventors: Ross C. Willoughby, Edward W. Sheehan, Craig M. Whitehouse
  • Patent number: 7312444
    Abstract: The present invention relates to an apparatus and method for focusing, separating, and detecting gas-phase ions using the principles of electrohydrodynamic quadrupole fields at high pressures, at or near atmospheric pressure. Ions are entrained in a concentric flow of gas and travel through a high-transmission element into a RF/DC quadrupole, exiting out of the RF/DC quadrupole, and then impacting on an ion detector, such as a faraday plate; or through an aperture or capillary tube with subsequent identification by a mass spectrometer. Ions with stable trajectories pass through the RF/DC quadrupole while ions with unstable trajectories drift off-axis collide with the rods and are lost. Alternatively, detection of ions with unstable trajectories can be accomplished by allowing the ions to pass through the rods and be detected by an off-axis detector.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: December 25, 2007
    Assignee: Chem - Space Associates, Inc.
    Inventors: Ross Clark Willougbhy, Edward William Sheehan
  • Patent number: 7095019
    Abstract: An improved ion source and portable analyzer for collecting and focusing dispersed gas-phase ions from a reagent source at atmospheric or intermediate pressure, having a remote source of reagent ions generated by direct or alternating currents, separated from a low-field sample ionization region by a stratified array of elements, each element populated with a plurality of openings, wherein DC potentials are applied to each element necessary for transferring reagent ions from the remote source into the low-field sample ionization region where the reagent ions react with neutral and/or ionic sample forming ionic species. The resulting ionic species are then introduced into the vacuum system of a mass spectrometer or ion mobility spectrometer.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: August 22, 2006
    Assignee: Chem-Space Associates, Inc.
    Inventors: Edward W Sheehan, Ross C Willoughby
  • Patent number: 5838002
    Abstract: An electrospray ion production method and ion source designed to reduce overall gas load on the vacuum system and enhance the ion production and collection efficiencies. This ion source is for gas phase ion analysis of constituents dissolved in liquid solution comprising a needle (10) held at high electrical potential through which the solution flows into a first chamber (1) maintained at reduced pressure, forming a highly charged liquid cone-jet. The highly charged liquid jet is steered, in the first chamber, on-axis with an aperture into a second chamber (2) maintained at higher pressure than that of the first chamber. The second chamber is heated and pressurized to facilitate desolvation of the solution droplets originating from the breakup of the highly charged jet, resulting in the production of gas phase ions by the electrospray ionization process. The gas phase ions are then sampled and detected.
    Type: Grant
    Filed: August 21, 1996
    Date of Patent: November 17, 1998
    Assignee: Chem-Space Associates, Inc
    Inventor: Edward W. Sheehan