Patents Assigned to Chevron Phillips Chemical Company, LP
  • Patent number: 10696759
    Abstract: Apparatuses and processes that produce multimodal polyolefins, and in particular, polyethylene resins, are disclosed herein. This is accomplished by using two reactors in series, where one of the reactors is a multi-zone circulating reactor that can circulate polyolefin particles through two polymerization zones optionally having two different flow regimes so that the final multimodal polyolefin has improved product properties and improved product homogeneity.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: June 30, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joseph A. Curren, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Eric J. Netemeyer, Jamie N. Sutherland, Paul J. Deslauriers, Jeffrey S. Fodor
  • Patent number: 10697889
    Abstract: Methods for determining the concentration of transition metal compounds in a solution containing more than one transition metal compound are described. Polymerization reactor systems providing real-time monitoring and control of the concentrations of the transition metal components of a multicomponent catalyst system are disclosed, as well as methods for operating such polymerization reactor systems and for improving methods of preparing the multicomponent catalyst system.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 30, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Richard M. Buck
  • Patent number: 10688461
    Abstract: Systems and methods for detecting and controlling bed height in fluidized bed reactors are disclosed. The systems and methods employ a plurality of radiation sources and a detector array located along the outer surface of a fluidized bed reactor.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: June 23, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffrey S. Lowell, Eric A. Ross, Kyle H. Leger, Tess E. Stecklein, Purnik Amin
  • Patent number: 10689333
    Abstract: A process comprising reacting, in a reactor having a fixed bed containing a solid catalyst which contains a zeolite, hydrogen sulfide and an oxirane in the presence of the solid catalyst to yield a reaction product with contains a mercapto-alcohol. A reactor system includes the reactor, an oxirane feed stream, a hydrogen sulfide feed stream, a fixed bed containing the solid catalyst placed inside the reactor, and an effluent stream containing the reaction product. The hydrogen sulfide and the oxirane are present in a mole ratio in a range of about 5:1 to 50:1.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 23, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jason L. Kreider, Daniel M. Hasenberg, Alex Pauwels
  • Patent number: 10689311
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system comprising (a) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and (b) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: June 23, 2020
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Jared T. Fern, Orson L. Sydora, Uriah J. Kilgore, Steven M. Bischof, Eric R. Fernandez
  • Patent number: 10689312
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and ii) an aluminoxane. Ethylene can be contacted with an organic reaction medium to form an ethylene feedstock mixture prior to contact with the catalyst system. The ethylene feedstock mixture can be contacted with the catalyst system inside or outside of the reaction zone.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: June 23, 2020
    Assignee: Chevron Phillip Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Jared T. Fern, Uriah J. Kilgore, Steven Ross Hutchison, Ray Rios, Eric R. Fernandez
  • Publication number: 20200190385
    Abstract: Drilling mud compositions including a first concentration of powdered latex and a second concentration of SAS are described. The second concentration of SAS can be greater than or equal to the first concentration of latex. In some examples, the second concentration of SAS can be greater than the first concentration of latex. The drilling mud compositions may include an oil-based carrier, or a water-based carrier. An example technique includes dispersing a first predetermined amount of powdered latex and a second predetermined amount of SAS in a water-based carrier to form a water-based mud. Another example technique includes dispersing a first predetermined amount of powdered latex and a second predetermined amount of SAS in an oil-based carrier to form an oil-based mud.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Mario A. Ramirez, Marshall D. Bishop
  • Patent number: 10676553
    Abstract: Silica-coated alumina activator-supports, and catalyst compositions containing these activator-supports, are disclosed. Methods also are provided for preparing silica-coated alumina activator-supports, for preparing catalyst compositions, and for using the catalyst compositions to polymerize olefins.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: June 9, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Qing Yang, Randy S. Muninger, Elizabeth A. Benham, Kathy S. Clear
  • Patent number: 10676545
    Abstract: Catalyst deactivating agents and compositions containing catalyst deactivating agents are disclosed. These catalyst deactivating agents can be used in methods of controlling polymerization reactions, methods of terminating polymerization reactions, methods of operating polymerization reactors, and methods of transitioning between catalyst systems.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 9, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Qing Yang, Kathy S. Clear, Tony R. Crain, Timothy O. Odi
  • Patent number: 10679734
    Abstract: Methods for simultaneously determining the concentrations of transition metal compounds in solutions containing two or more transition metal compounds are described. Polymerization reactor systems providing real-time monitoring and control of the concentrations of the transition metal components of a multicomponent catalyst system are disclosed, as well as methods for operating such polymerization reactor systems, and for improving methods of preparing the multicomponent catalyst system.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 9, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Richard M. Buck, Qing Yang
  • Publication number: 20200172640
    Abstract: This disclosure provides for polymerization processes of polyolefins wherein the melt index can be regulated. For example, there is provided a process for producing a polyethylene, the process comprising: (1) in a polymerization reactor, contacting (a) a polymerization catalyst, (b) ethylene, (c) an optional ?-olefin comonomer, and (d) (x+y) ppm by weight of an antistatic agent on an ethylene basis; and (2) applying reaction conditions to the reaction mixture suitable to produce the polyethylene having a desired set of characteristics, such as desired target melt index. The disclosed polymerization processes allow for production of polyolefins having higher melt indices, and in the alternative to produce polyolefins having a desired target melt index at lower polymerization temperatures.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Daniel M. Hasenberg, Jeffrey S. Lowell
  • Patent number: 10669359
    Abstract: Methods for reinforcing chromium catalysts by the deposition of additional silica are disclosed herein. The resultant silica-reinforced chromium supported catalysts can be used to polymerize olefins to produce, for example, ethylene based homopolymers and copolymers with higher molecular weights and additional long chain branching.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 2, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Stephen L. Kelly
  • Patent number: 10669217
    Abstract: A process for hydrogenation of an aromatic hydrocarbon including introducing a hydrocarbon feed comprising the aromatic hydrocarbon, a hydrogen feed comprising hydrogen, and a hydrogenation catalyst into a hydrogenation reactor operable with a liquid phase and a gas phase to produce a hydrogenation product; removing a gas phase product stream comprising the hydrogenation product; withdrawing a portion of the liquid phase; subjecting the withdrawn portion to heat exchange to provide a reduced-temperature withdrawn portion; introducing the reduced-temperature withdrawn portion back into the hydrogenation reactor; and at least one of: (a) providing at least two heat exchangers to effect the subjecting of the withdrawn portion of the liquid phase to heat exchange; (b) separating a decomposition product of the hydrogenation catalyst, the hydrogenation catalyst, or both, from the withdrawn portion of the liquid phase prior to the heat exchange; and (c) reducing exposure of the hydrogenation catalyst to an oxygen-co
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 2, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Israel Garcia
  • Patent number: 10669362
    Abstract: A method of preparing a catalyst comprising a) contacting a titanium-containing compound, a solvating agent, and a solvent to form a solution; b) contacting the solution with a chrominated silica-support to form a pre-catalyst; and c) thermally treating the pre-catalyst by heating to a temperature of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 2, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 10662128
    Abstract: Multi-reactor systems with aromatization reactor vessels containing a catalyst with low surface area and pore volume, followed in series by aromatization reactor vessels containing a catalyst with high surface area and pore volume, are disclosed. Related reforming methods using the different aromatization catalysts also are described.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 26, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Gabriela D. Alvez-Manoli, Xianghong Hao
  • Patent number: 10662266
    Abstract: Methods for preparing supported chromium catalysts containing a chromium (III) compound and an activator-support are disclosed. These supported chromium catalysts can be used in catalyst compositions for the polymerization of olefins to produce polymers having low levels of long chain branching, and with greater sensitivity to the presence of hydrogen during polymerization.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: May 26, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Mark L. Hlavinka, Kathy S. Clear
  • Patent number: 10654948
    Abstract: An ethylene polymer having a density greater than about 0.930 g/ml and a level of long chain branching ranging from about 0.001 LCB/103 carbons to about 1.5 LCB/103 carbons as determined by SEC-MALS. An ethylene polymer having a level of short chain branching ranging from about 0 to about 10 mol. % and a level of long chain branching ranging from about 0.001 LCB/103 carbons to about 1.5 LCB/103 carbons as determined by SEC-MALS. An ethylene polymer having a polydispersity index ranging from about 8 to about 25 and a level of long chain branching ranging from about 0.001 LCB/103 carbons to about 1.5 LCB/103 carbons as determined by SEC-MALS.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 19, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Qing Yang, Max P. McDaniel, Joel L. Martin, Tony R. Crain, Steve M. Wharry, Jared L. Barr, Youlu Yu
  • Patent number: 10654022
    Abstract: The present invention discloses high pressure flow reactor vessels and associated systems. Also disclosed are processes for producing thiol compounds and sulfide compounds utilizing these flow reactor vessels.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: May 19, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Eric J. Netemeyer, Michael S. Matson, Greg L. Thomas, Dale M. Solaas, Christopher R. Tully, Joe E. Figard
  • Patent number: 10654048
    Abstract: The present invention discloses mining collector compositions containing sodium metabisulfite and a thiocarbonate compound. Flotation processes for recovering molybdenum from a copper-molybdenum concentrate using the collector compositions also are disclosed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: May 19, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Benigno Ramos
  • Patent number: 10654771
    Abstract: Spent aromatization catalysts containing a transition metal and a catalyst support are selectively poisoned in the disclosed reforming methods, resulting in improvements in overall aromatics yield and selectivity.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: May 19, 2020
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ryan W. Snell, Theresa E. Feltes, Cori A. Demmelmaier-Chang