Patents Assigned to Chevron Phillips Chemical Company, LP
  • Publication number: 20240191149
    Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.
    Type: Application
    Filed: February 19, 2024
    Publication date: June 13, 2024
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
  • Patent number: 12005425
    Abstract: A method of preparing a catalyst comprising a) drying a chrominated-silica support followed by contacting with a titanium(IV) alkoxide to form a metalized support, b) drying a metalized support followed by contacting with an aqueous alkaline solution comprising from about 3 wt. % to about 20 wt. % of a nitrogen-containing compound to form a hydrolyzed metalized support, and c) drying the hydrolyzed metalized support followed by calcination at a temperature in a range of from about 400° C. to about 1000° C. and maintaining the temperature in the range of from about 400° C. to about 1000° C. for a time period of from about 1 minute to about 24 hours to form the catalyst.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: June 11, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Patent number: 11999814
    Abstract: Sulfated bentonite compositions are characterized by a total pore volume from 0.4 to 1 mL/g, a total BET surface area from 200 to 400 m2/g, and an average pore diameter from 55 to 100 Angstroms. The sulfated bentonite compositions also can be characterized by a d50 average particle size in a range from 15 to 50 ?m and a ratio of d90/d10 from 3 to 15. The sulfated bentonite compositions can contain a sulfated bentonite and from 10 to 90 wt. % of colloidal particles, or the sulfated bentonite compositions can contain a sulfated bentonite and from 0.2 to 10 mmol/g of zinc and/or phosphorus. These compositions can be utilized in metallocene catalyst systems to produce ethylene based polymers.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: June 4, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Qing Yang, Ryan N. Rose, Kathy S. Clear, Graham R. Lief, Eric D. Schwerdtfeger, Anand Ramanathan, Jeremy M. Praetorius, Connor D. Boxell
  • Patent number: 11998902
    Abstract: Disclosed herein are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with an inorganic base to form an aqueous mixture having a pH of at least 4, followed by contacting a solid oxide with the aqueous mixture to produce the fluorided solid oxide. Also disclosed are methods for preparing fluorided solid oxides by contacting an acidic fluorine-containing compound with a solid oxide to produce a mixture, followed by contacting the mixture with a inorganic base to produce the fluorided solid oxide at a pH of at least about 4. The fluorided solid oxide can be used as an activator component in a catalyst system for the polymerization of olefins.
    Type: Grant
    Filed: July 13, 2023
    Date of Patent: June 4, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Qing Yang, Tony R. Crain
  • Patent number: 11999807
    Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.
    Type: Grant
    Filed: September 8, 2023
    Date of Patent: June 4, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius
  • Patent number: 11999679
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of forming a supported chromium catalyst comprising chromium in a hexavalent oxidation state, irradiating the hydrocarbon reactant and the supported chromium catalyst with a light beam at a wavelength in the UV-visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. The supported chromium catalyst can be formed by heat treating a supported chromium precursor, contacting a chromium precursor with a solid support while heat treating, or heat treating a solid support and then contacting a chromium precursor with the solid support.
    Type: Grant
    Filed: August 24, 2023
    Date of Patent: June 4, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Jared Barr, Kathy S. Clear, William C. Ellis
  • Publication number: 20240173660
    Abstract: A downflow polymer product withdrawal system includes a withdrawal line to collect a product including a powder and a carrier gas. The line may include at least one downward sloped descending section and is absent of any non-self draining regions. The downflow system may further include a lock hopper, a fill valve between the line and the lock hopper, and a discharge valve downstream of the lock hopper. An upflow polymer product withdrawal system includes a withdrawal line to collect and discharge a product comprising a powder and a carrier gas. The line may include at least one non-vertical section including at least one upward sloped ascending section and at least one downward sloped descending section, and is absent of any non-self draining regions. The upflow system may further include a lock hopper, a fill valve between the line and the lock hopper, and a discharge valve.
    Type: Application
    Filed: November 29, 2022
    Publication date: May 30, 2024
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Kenneth A. Dooley, Jeffrey S. Lowell, Darrin L. Jackson, Tess E. Stecklein
  • Patent number: 11993667
    Abstract: Disclosed are metallocene compounds, catalyst compositions comprising at least one metallocene compound, processes for polymerizing olefins, methods for making catalyst compositions, olefin polymers and articles made from olefin polymers. In an aspect, a metallocene compound and catalyst composition are disclosed in which the metallocene contains at least one indenyl ligand, the indenyl ligand containing at least one halogenated substituent, such as a fluorinated substituent. These metallocene compounds and catalyst compositions can produce polyethylene having unexpectedly low levels of short chain branching.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: May 28, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Graham R. Lief, Qing Yang, Eric J. Haschke
  • Patent number: 11993568
    Abstract: Multi-reactor systems with aromatization reactor vessels containing a catalyst with low surface area and pore volume, followed in series by aromatization reactor vessels containing a catalyst with high surface area and pore volume, are disclosed. Related reforming methods using the different aromatization catalysts also are described.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: May 28, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Gabriela D. Alvez-Manoli, Xianghong Hao
  • Patent number: 11976036
    Abstract: Processes for producing n-heptane from a mixture of 1-hexene and 1-octene in the presence of a suitable isomerization-metathesis catalyst followed by a hydrogenation step are disclosed. Integrated manufacturing systems for producing n-heptane with minimal waste also are disclosed.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: May 7, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Jeffery C Gee, James Hillier, Kamaljeet Kaur, Ronald C. Smith, Darin B. Tiedtke, Mark L. Hlavinka
  • Patent number: 11976029
    Abstract: Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed in which the hydrocarbon reactant and either a supported chromium (VI) catalyst or a supported chromium (II) catalyst are contacted, optionally with UV-visible light irradiation, followed by exposure to an oxidizing atmosphere and then hydrolysis to form a reaction product containing the alcohol compound and/or the carbonyl compound. The presence of oxygen significant increases the amount of alcohol/carbonyl product formed, as well as the formation of oxygenated dimers and trimers of certain hydrocarbon reactants.
    Type: Grant
    Filed: October 11, 2023
    Date of Patent: May 7, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jared L. Barr, Carlos A. Cruz, Masud M. Monwar, Max P. McDaniel, Kathy S. Clear
  • Patent number: 11976142
    Abstract: A hydrogel comprising water, and a plurality of titanium-silica-chromium nanoparticle agglomerates, wherein each titanium-silica-chromium nanoparticle agglomerate is an agglomeration of titanium-silica-chromium nanoparticles, the agglomerates having an average titanium penetration depth designated x with a coefficient of variation for the average titanium penetration depth of less than about 1.0 wherein a silica content of the hydrogel is of from about 10 wt. % to about 35 wt. % based on a total weight of the hydrogel.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: May 7, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Eric D. Schwerdtfeger, Jeremy M. Praetorius
  • Publication number: 20240141130
    Abstract: A tandem polyolefin depolymerization-metathesis process and system for converting polymer waste to smaller hydrocarbons, specifically liquid and gaseous products, which subsequently can be modified and used as feeds or co-feeds for making circular products such as circular ethylene and polyethylene. Specifically, the disclosed processes include a tandem depolymerization process step followed by a metathesis process to provide a effluent that can be separated, further processed with a subsequent depolymerization step, or both. The effluents can be supplied to downstream processing units such as a steam cracker or AROMAX® unit thereby providing an efficient method for converting polymer waste into useful circular products. Therefore, these processes and systems can expand the number of usable plastic waste streams and improve the economics of plastic waste recycling.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Cori A. Demmelmaier-Chang, Mark L. Hlavinka, Orson Sydora, Sikander Hakim, Jeffery Gee, Joseph Bergmeister, Gabriela Alvez, Steven S. Lim
  • Publication number: 20240140883
    Abstract: Depolymerization processes and systems for converting polyolefin waste and other waste plastic to hydrocarbons, specifically liquid and gaseous depolymerization reaction products. A depolymerization or catalytic pyrolysis process can be conducted on a process feed which includes a polyolefin waste and a hydrocarbon co-feed under depolymerization conditions, including contacting the reactor feed with a depolymerization catalyst such as a zeolite-based catalyst, with the system described herein. The resulting reactor effluent subsequently can be used as feeds or co-feeds for making circular products such as circular ethylene and circular polyethylene.
    Type: Application
    Filed: October 26, 2023
    Publication date: May 2, 2024
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Cori Demmelmaier-Chang, Mark L. Hlavinka, Sikander Hakim, Gabriela Alvez-Manoli, Joseph Bergmeister, Steven Lim
  • Patent number: 11969718
    Abstract: Supported chromium catalysts with an average valence less than +6 and having a hydrocarbon-containing or halogenated hydrocarbon-containing ligand attached to at least one bonding site on the chromium are disclosed, as well as ethylene-based polymers with terminal alkane, aromatic, or halogenated hydrocarbon chain ends. Another ethylene polymer characterized by at least 2 wt. % of the polymer having a molecular weight greater than 1,000,000 g/mol and at least 1.5 wt. % of the polymer having a molecular weight less than 1000 g/mol is provided, as well as an ethylene homopolymer with at least 3.5 methyl short chain branches and less than 0.6 butyl short chain branches per 1000 total carbon atoms.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: April 30, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Masud M. Monwar, Carlos A. Cruz, Jared L. Barr, Max P. McDaniel
  • Patent number: 11969725
    Abstract: Reactor systems, reactor coolant systems, and associated processes for polymerizing polyolefins are described. The reactor systems generally include a reactor pipe and a coolant system, in which the coolant system includes a jacket pipe surrounding at least a portion of the reactor pipe to form an annulus therebetween, at least one spacer coupling the jacket to the reactor pipe, and a coolant which flows through the annulus to remove heat from the reactor pipe. At least one of the external surface of the reactor pipe, the internal surface of the jacket, and at least one spacer, are independently modified, for example by polishing, coating, or reshaping, to reduce the fluid resistance of the coolant flow through the annulus.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: April 30, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Anurag Gupta, Scott E. Kufeld, Larry W. Ezell, Robert R. McElvain, Robert F. Parrott, Joel A. Mutchler
  • Patent number: 11958745
    Abstract: Processes and systems that utilize methane pyrolysis for carbon capture from a petrochemical stream that contains hydrogen and methane. The petrochemical stream can be the tail gas of a hydrocarbon cracking system, or any other petrochemical stream containing hydrogen and methane. The petrochemical stream can be separated into a hydrogen product stream and a methane product stream, before sending the methane product stream to a methane pyrolysis unit. The methane pyrolysis unit converts methane to solid carbon and hydrogen.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: April 16, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: James Hillier, Michael S. Webster-Gardiner
  • Patent number: 11955674
    Abstract: Processes and systems that utilize a fuel cell for carbon capture from a petrochemical stream that contains hydrogen and methane. The petrochemical stream can be the tail gas of a hydrocarbon cracking system, or any other petrochemical stream containing hydrogen and methane. The petrochemical stream can be separated into a hydrogen product stream and a methane product stream, before sending the methane product stream to the fuel cell. The fuel cell converts methane to carbon dioxide and hydrogen to water, while generating electricity that can be used to power equipment.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: April 9, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: James Hillier
  • Patent number: 11945770
    Abstract: The present disclosure provides for processes and systems for the purification of alkyl sulfide product streams including dimethyl sulfide (DMS). In some aspects, the disclosure provides for the removal of carbon disulfide (CS2) from DMS via hydrolytic catalysis. In further embodiments, the disclosed catalytic processes are performed using mixed-metal catalyst systems such as cobalt-molybdenum (CoMo) and nickel-molybdenum (NiMo) catalyst systems.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: April 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth M. Lassen, Ugochukwu Nwagwu, Jonathan Powell, Daniel M. Hasenberg
  • Patent number: 11945771
    Abstract: Depolymerization processes and systems for converting polyolefin waste and other waste plastic to hydrocarbons, specifically liquid and gaseous depolymerization reaction products. A depolymerization or catalytic pyrolysis process can be conducted on a process feed which includes a polyolefin waste and a hydrocarbon co-feed under depolymerization conditions, including contacting the reactor feed with a depolymerization catalyst such as a zeolite-based catalyst. The resulting reactor effluent subsequently can be used as feeds or co-feeds for making circular products such as circular ethylene and circular polyethylene.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: April 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Cori Demmelmaier-Chang, Mark L. Hlavinka, Sikander Hakim, Gabriela Alvez, Joseph Bergmeister, Steven Lim