Patents Assigned to China Academy of Building Research
  • Publication number: 20230129704
    Abstract: Provided is a method for building an urban canopy model based on tropical island climate characteristics. Adjacent regions are linked together, multiple streets of finite lengths within the regions affecting each other. Net radiation heat flux Q*=long-wave radiation+short-wave radiation. The tropical island urban canopy model considers the strong solar radiation and high temperature and high humidity climate characteristics of tropical cities and the influence of perennial monsoons on island cities, improves the methods of processing long-wave radiation flux, short-wave radiation flux, sensible and latent heat flux, street canyon wind velocity, heat storage flux, anthropogenic heat flux and horizontal heat flux on the basis of an urban canopy model, and has higher adaptability to the studies on the tropical island-type urban heat island effect.
    Type: Application
    Filed: July 26, 2022
    Publication date: April 27, 2023
    Applicant: China Academy of Building Research
    Inventors: Haizhu Zhou, Qingqin Wang, Xiaoping Li, Hai Wang, Yitong Li, Yingchun Xu, Huifen Lv, Daokun Zhong, Mingkai Du, Yanquan Cui
  • Patent number: 10975284
    Abstract: A well cementation working solution prepared from red mud, slag and waste drilling fluids. The working solution is prepared from the following components in parts by weight: 100 parts of waste drilling fluids, 50-100 parts of slag, 5-50 parts of red mud, 4-7 parts of a suspension stabilizer, 1-7 parts of an activating aid, 0.5-5 parts of an anti-pollution agent and 0.4-3.5 parts of a diluent. The waste drilling fluids are waste waterborne drilling fluids. The slag is blast furnace slag or vanadium-titanium slag. The suspension stabilizer is sodium bentonite, carboxymethyl cellulose or a mixture of sodium bentonite and carboxymethyl cellulose. The activating aid is sodium metasilicate nonahydrate, sodium carbonate or a mixture of sodium metasilicate nonahydrate and sodium carbonate. The anti-pollution agent is sodium salicylate, potassium citrate or a mixture of sodium salicylate and potassium citrate. The diluent is sodium lignin sulfonate.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 13, 2021
    Assignees: SouthWest Petroleum University, China Academy of Building Research, CNPC Engineering Technology R&D Company Limited
    Inventors: Xiaowei Cheng, Dan Long, Kaiyuan Mei, Kaiqiang Liu, Gaoyin Zhang, Dan Qin, Xianshu Gao, Jianzhou Jin, Zhaijun Wen, Yongjin Yu, Chunmei Zhang, Zaoyuan Li, Xingguo Zhang, Xiaoyang Guo
  • Patent number: 10876945
    Abstract: A method for evaluating the breakage strength of first and second cemented surfaces of well cementation under a dynamic load, includes: producing a rock-set cement-casing composite structure sample; clamping the sample between an incident rod and an output rod of a Hopkinson rod, hitting the incident rod with a conical punch to generate incident waves, enabling the incident waves to pass through the sample to generate reflected waves and projected waves, recording dynamic strain signals of incident waves, reflected waves and projected waves, and converting the dynamic strain signals into electrical signals and transmitting the electrical signals to a computer; recording the process and the corresponding time point from breakage starting to a complete breakage of the first and second cemented surfaces by a photographic instrument; obtaining a strain rate time travel curve and a stress-strain curve, and obtaining the corresponding breakage strength by analyzing the curve peak points.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: December 29, 2020
    Assignees: SOUTHWEST PETROLEUM UNIVERSITY, CHINA ACADEMY OF BUILDING RESEARCH, CNPC ENGINEERING TECHNOLOGY R&D COMPANY LIMITED
    Inventors: Xiaowei Cheng, Dan Qin, Kaiyuan Mei, Kaiqiang Liu, Gaoyin Zhang, Xianshu Gao, Jianzhou Jin, Zhaijun Wen, Yongjin Yu, Chunmei Zhang, Zaoyuan Li, Xingguo Zhang, Xiaoyang Guo
  • Publication number: 20200071594
    Abstract: A well cementation working solution prepared from red mud, slag and waste drilling fluids. The working solution is prepared from the following components in parts by weight: 100 parts of waste drilling fluids, 50-100 parts of slag, 5-50 parts of red mud, 4-7 parts of a suspension stabilizer, 1-7 parts of an activating aid, 0.5-5 parts of an anti-pollution agent and 0.4-3.5 parts of a diluent. The waste drilling fluids are waste waterborne drilling fluids. The slag is blast furnace slag or vanadium-titanium slag. The suspension stabilizer is sodium bentonite, carboxymethyl cellulose or a mixture of sodium bentonite and carboxymethyl cellulose. The activating aid is sodium metasilicate nonahydrate, sodium carbonate or a mixture of sodium metasilicate nonahydrate and sodium carbonate. The anti-pollution agent is sodium salicylate, potassium citrate or a mixture of sodium salicylate and potassium citrate. The diluent is sodium lignin sulfonate.
    Type: Application
    Filed: July 13, 2018
    Publication date: March 5, 2020
    Applicants: SouthWest Petroleum University, China Academy of Building Research, CNPC Engineering Technology R&D Company Limited
    Inventors: Xiaowei CHENG, Dan LONG, Kaiyuan MEI, Kaiqiang LIU, Gaoyin ZHANG, Dan QIN, Xianshu GAO, Jianzhou JIN, Zhaijun WEN, Yongjin YU, Chunmei ZHANG, Zaoyuan LI, Xingguo ZHANG, Xiaoyang GUO
  • Publication number: 20200011777
    Abstract: A method for evaluating the breakage strength of first and second cemented surfaces of well cementation under a dynamic load, includes: producing a rock-set cement-casing composite structure sample; clamping the sample between an incident rod and an output rod of a Hopkinson rod, hitting the incident rod with a conical punch to generate incident waves, enabling the incident waves to pass through the sample to generate reflected waves and projected waves, recording dynamic strain signals of incident waves, reflected waves and projected waves, and converting the dynamic strain signals into electrical signals and transmitting the electrical signals to a computer; recording the process and the corresponding time point from breakage starting to a complete breakage of the first and second cemented surfaces by a photographic instrument; obtaining a strain rate time travel curve and a stress-strain curve, and obtaining the corresponding breakage strength by analyzing the curve peak points.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 9, 2020
    Applicants: SouthWest Petroleum University, China Academy of Building Research, CNPC Engineering Technology R&D Company Limited
    Inventors: Xiaowei CHENG, Dan QIN, Kaiyuan MEI, Kaiqiang LIU, Gaoyin ZHANG, Xianshu GAO, Jianzhou JIN, Zhaijun WEN, Yongjin YU, Chunmei ZHANG, Zaoyuan LI, Xingguo ZHANG, Xiaoyang GUO