Patents Assigned to Chorum Technologies LP
  • Publication number: 20040141685
    Abstract: An optical wavelength router separates an input signal into two complementary output signals. A beamsplitter of the wavelength router separates the input signal into a first beam and a second beam. A first resonator reflects the first beam producing a group delay that is dependent on wavelength. Similarly, a second resonator reflects the second beam. The center wavelength of the second resonator is offset relative to that of the first resonator by one half of the free spectral range of the first resonator, so that the resonance frequencies of the second resonator are matched to the anti-resonance frequencies of the first resonator. The beams reflected by the resonators interfere within the beamsplitter to produce two output signals containing complementary subsets of the spectrum of the input signal (e.g., even optical channels are routed to a first output port and the odd optical channels are routed to a second output port).
    Type: Application
    Filed: December 18, 2003
    Publication date: July 22, 2004
    Applicant: Chorum Technologies LP, a Delaware corporation
    Inventors: Gan Zhou, Kuang-Yi Wu
  • Patent number: 6690846
    Abstract: An optical wavelength router separates an input signal into two complementary output signals. A beamsplitter of the wavelength router separates the input signal into a first beam and a second beam. A first resonator reflects the first beam producing a group delay that is dependent on wavelength. Similarly, a second resonator reflects the second beam. The center wavelength of the second resonator is offset relative to that of the first resonator by one half of the free spectral range of the first resonator, so that the resonance frequencies of the second resonator are matched to the anti-resonance frequencies of the first resonator. The beams reflected by the resonators interfere within the beamsplitter to produce two output signals containing complementary subsets of the spectrum of the input signal (e.g., even optical channels are routed to a first output port and the odd optical channels are routed to a second output port).
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: February 10, 2004
    Assignee: Chorum Technologies LP
    Inventors: Gan Zhou, Kuang-Yi Wu
  • Patent number: 6621632
    Abstract: An apparatus for processing an optical signal includes a tunable optical element and a reflective element. The tunable optical element receives an input signal at an incidence angle and separates the input signal into a first beam having a first optical path length and a second beam having a second optical path length. The difference between the first optical path length and the second optical path length is based at least in part upon the incidence angle of the input signal. The reflective element reflects the first beam and the second beam such that the first beam interferes with the second beam to produce a first output signal and a second output signal. The first output signal comprises a first subset of wavelength channels from the input signal and the second output signal comprises a second subset of wavelength channels from the input signal.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: September 16, 2003
    Assignee: Chorum Technologies LP
    Inventor: Gan Zhou
  • Patent number: 6600582
    Abstract: An optical add/drop wavelength switch is controllably changed from a bridge state, in which output is identical to input, e.g. a Wavelength Division Multiplexed (WDM) input, and an add/drop state, In which a signal input to an add port is substituted for a particular wavelength subrange of the WDM input, other wavelengths of the WDM input being unchanged. In one embodiment, the wavelength subrange of the WDM signal is given a polarization different from other wavelengths of the WDM, such as by using a stacked waveplate or other optical filter or polarization discriminator. The differently-polarized wavelengths can the be spatially separated, e.g. by a birefringent element or a polarization beam splitter, preferably In a bit-controlled fashion, such as by using a liquid crystal or other polarization controller. Polarization controllers and discriminators can be used similarly to selectably align or combine the add signal with the portion of the WDM signal outside the subrange.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: July 29, 2003
    Assignee: Chorum Technologies LP
    Inventors: Jian-Yu Liu, Kuang-Yi Wu
  • Publication number: 20030099433
    Abstract: An optical device for demultiplexing an optical signal comprises a grating that receives an optical signal comprising a plurality of wavelength channels, and generates a plurality of spatially separated light beams. Each light beam is associated with a particular wavelength channel. The optical device further comprises an optical element that at least partially compensates a temperature based frequency shift associated with the spatially separated light beams. The optical device further comprises a plurality of lenses and a plurality of fibers. The plurality of lenses are arranged such that a spacing between at least a pair of lenses is determined to at least partially compensate a non-linearity introduced by the grating. Each fiber is associated with a corresponding lens and receives a corresponding light beam. At least one fiber is placed a distance that is less than a focal length associated with its corresponding lens.
    Type: Application
    Filed: November 14, 2002
    Publication date: May 29, 2003
    Applicant: Chorum Technologies LP
    Inventors: Seng-leong Wong, Leo Yu-Yu Lin, YanQing Lu
  • Patent number: 6559992
    Abstract: An interferometer receives an input optical signal and outputs a signal after changing at least the dispersion of said signal. At least portions of the interferometer are adjustable to adjust at least a first dispersion parameter. Examples of dispersion parameters which are adjustable include dispersion magnitude, center wavelengths and waveshapes or slopes. Preferably the dispersion in the output signal is substantially reduced or substantially eliminated, compared to the dispersion of the input signal. By providing for adjustability of one or more dispersion parameters, a dispersion compensator can be appropriately adjusted for use in a variety of applications.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: May 6, 2003
    Assignee: Chorum Technologies LP
    Inventors: Gan Zhou, Kuang-Yi Wu, Chi-Hao Cheng
  • Patent number: 6545779
    Abstract: A system for dealing with faults in wavelength division multiplexed (WDM) optical communications between two terminals connected by at least two optical fibers monitors the status of communications over both optical fibers. If both optical fibers are operating normally, a first set of channels is routed over the first optical fiber and a second set of channels (which is mutually exclusive of the first set of channels) is routed over the second optical fiber. However, if a fault is detected in either optical fiber, the first terminal combines the first and second sets of channels and routes the combined channels over the remaining optical fiber to the second terminal. The second terminal separates the combined channels to recreate the first and second sets of channels. Wavelength slicers can be used to multiplex and demultiplex the channels at both terminals. This architecture allows the first and second sets of channels to be interdigitally spaced.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: April 8, 2003
    Assignee: Chorum Technologies LP
    Inventors: Jian-Yu Liu, Kuang-Yi Wu
  • Patent number: 6545783
    Abstract: An optical wavelength add/drop multiplexer provides communications between two optical links supporting wavelength division multiplexing (WDM). A wavelength slicer spatially separates the input signal into two sets of channels. An optical filter, such as an interference filter, spatially separates the a subset of the input channels into an array of separated channels. A programmable optical add/drop switch array selectively routes channels from an array of input ports to an array of drop ports, substitutes channels from an array of add ports in place of the dropped channels, and routes the remaining input channels and added channels to an array of output ports. The channels from the output ports of the said add/drop switch array are then combined and transmitted into the second optical link.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: April 8, 2003
    Assignee: Chorum Technologies LP
    Inventors: Kuang-Yi Wu, Jian-Yu Liu
  • Publication number: 20030030881
    Abstract: An optical device comprises a first birefringent crystal having a first length, a second birefringent crystal having a second length, and a dynamic polarization rotator. An optical signal propagating through the first and second birefringent crystals has an effective optical path length based, at least in part, upon the first length of the first birefringent crystal and the second length of the second birefringent crystal. The dynamic polarization rotator adjusts the effective optical path length of the optical signal in response to a control signal.
    Type: Application
    Filed: August 3, 2001
    Publication date: February 13, 2003
    Applicant: Chorum Technologies LP
    Inventors: Tiejun Xia, Chi-Hao Cheng, Shuxin Li, Jian-Yu Liu, Kuang-Yi Wu
  • Patent number: 6519060
    Abstract: An optical wavelength add/drop multiplexer provides communications between two optical links supporting wavelength division multiplexing (WDM). A wavelength slicer spatially separates the input signal into two sets of channels. An optical filter, such as an interference filter, spatially separates the a subset of the input channels into an array of separated channels. A programmable optical add/drop switch array selectively routes channels from and array of input ports to an array of drop ports, substitutes channels from an array of add ports in place of the dropped channels, and routes the remaining input channels and added channels to an array of output ports. The channels from the output ports of the said add/drop switch array are then combined and transmitted into the second optical link.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: February 11, 2003
    Assignee: Chorum Technologies LP
    Inventor: Jian-Yu Liu
  • Patent number: 6519022
    Abstract: An optical routing switch uses two liquid crystal cells that can produce offsetting rotations of the polarization of the input beam to provide fast, symmetrical switching. The input beam is first polarized and then passes through both liquid crystal cells in series. Both liquid crystal cells have two states (e.g., voltage-off and voltage-on) in which the beam polarization is rotated by predetermined angles (e.g., 0° and 90°), but in opposing rotational directions. A controller selectively rotates the LC cells through a sequence of steps, beginning with a “through” state in which both LC cells are in the first state. The polarization rotations provided by both liquid crystal cells offset one another so the beam polarization remains essentially unchanged. The LC cells can be rapidly switched to a “cross” state in which only one of the LC cells is changed to the second state and the polarization of the beam is rotated by a predetermined degree.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: February 11, 2003
    Assignee: Chorum Technologies LP
    Inventors: Ming Xu, Chongchang Mao, Kuang-Yi Wu, Jian-Yu Liu
  • Patent number: 6515786
    Abstract: An optical device comprises a first birefringent crystal having a first length, a second birefringent crystal having a second length, and a dynamic polarization rotator. An optical signal propagating through the first and second birefringent crystals has an effective optical path length based, at least in part, upon the first length of the first birefringent crystal and the second length of the second birefringent crystal. The dynamic polarization rotator adjusts the effective optical path length of the optical signal in response to a control signal.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: February 4, 2003
    Assignee: Chorum Technologies LP
    Inventors: Tiejun Xia, Chi-Hao Cheng, Shuxin Li, Jian-Yu Liu, Kuang-Yi Wu
  • Publication number: 20030021011
    Abstract: Devices and methods for equalizing the gain of an optical amplifier are described. For devices including harmonic filters that are controllable by amplitude control voltages and phase control voltages, techniques for controlling the amplitude control voltages and phase control voltages are presented. Additionally, device architectures are described by which an incoming optical signal is equalized to compensate for uneven gain in prior amplifiers or other optical components, and in which the incoming optical signal is received at a beam displacer and separated into orthogonal component beams, wherein the beams are counter-propagated through the equalizer in opposite directions through the same spatial path so as to minimize or eliminate the effects spatially dependent imperfections in the equalizer.
    Type: Application
    Filed: February 15, 2002
    Publication date: January 30, 2003
    Applicant: Chorum Technologies LP
    Inventors: Tizhi Huang, Ming Xu, Chongchang Mao, Tiejun Xia, Wei Feng
  • Publication number: 20030020989
    Abstract: Devices and methods for equalizing the gain of an optical amplifier are described. For devices including harmonic filters that are controllable by amplitude control voltages and phase control voltages, techniques for controlling the amplitude control voltages and phase control voltages are presented. Additionally, device architectures are described by which an incoming optical signal is equalized to compensate for uneven gain in prior amplifiers or other optical components, and in which the incoming optical signal is received at a beam displacer and separated into orthogonal component beams, wherein the beams are counter-propagated through the equalizer in opposite directions through the same spatial path so as to minimize or eliminate the effects spatially dependent imperfections in the equalizer.
    Type: Application
    Filed: February 15, 2002
    Publication date: January 30, 2003
    Applicant: Chorum Technologies LP
    Inventors: Yueai Liu, Xiangjun Zhao, Xinjie Huang, Tizhi Huang
  • Patent number: 6512615
    Abstract: A wavelength division multiplexing/demultiplexing device is presented utilizing a polarization-based filter to obtain a flat-top filter response which can be utilized to create a flat-top slicer which separates out odd and even wavelengths, or upper and lower channels of an input signal. The polarization-based filter provides superior peak flatness and isolation for narrow channel spacings over what can be obtained in traditional interferometric devices. The flat-top slicer can be used as the first stage of a cascade of WDM devices in which following stages can be based on polarization-based filters or traditional interferometric WDM devices, which are adequate due to the increased channel spacing obtained in the first stage of the cascade.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: January 28, 2003
    Assignee: Chorum Technologies LP
    Inventors: Kuang-Yi Wu, Jian-Yu Liu
  • Patent number: 6510004
    Abstract: A temperature insensitive polarization filter is made by inter-digitally stacking two different types of birefringent elements having positive and negative thermal coefficients. This results in a net cancellation of the positive and negative thermal coefficients of the birefringent elements within the filter. The optical retardance of each type of birefringent element changes by an almost equal amount as the operating temperature changes, with one type of element shifting toward a larger optical retardance and the other type of element shifting toward a smaller optical retardance. However, the total retardance remains essentially constant. This assures that the filter can operate over a wide temperature range without shifting its spectral response.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: January 21, 2003
    Assignee: Chorum Technologies LP
    Inventors: Kuang-Yi Wu, Jian-Yu Liu
  • Patent number: 6498680
    Abstract: An optical wavelength router separates even and odd optical channels from an input WDM signal. The input beam is first converted into a pair of orthogonally-polarized beams. One of the beams is reflected by a mirror, while the other is reflected by a Fabry-Perot resonator (or etalon). The group delay of the reflected beams is strongly dependent on wavelength. The beams reflected from the resonator and mirror are combined and interfere in a birefringent element (e.g., a beam displacer or polarized beamsplitter) to produce a beam having mixed polarization as a function of wavelength. The polarized components of this beam are separated by a polarization-dependent routing element to produce two output beams containing complementary subsets of the input optical spectrum (e.g., even optical channels are routed to output port A and odd optical channels are routed to output port B).
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: December 24, 2002
    Assignee: Chorum Technologies LP
    Inventors: Gan Zhou, Kuang-Yi Wu, Sihan Lin, Ding Wang
  • Patent number: 6455841
    Abstract: A method and apparatus for optical wavelength routing separates even and odd optical channels from an input WDM signal. The input beam is first converted to at least one pair of orthogonally-polarized beams. A split-mirror resonator has a front mirror with two regions having different reflectivities, and a reflective back mirror spaced a predetermined distance behind the front mirror. Each of the orthogonally-polarized beams is incident on a corresponding region of the front mirror of the split-mirror resonator. A portion of each beam is reflected by the front mirror, which the remainder of each beam enters the resonator cavity where it is reflected by the back mirror back through the front mirror. The group delay of each reflected beam is strongly dependent on wavelength. The two reflected beams from the resonator are combined and interfere in a birefringent element (e.g., a beam displacer or waveplates) to produce a beam having mixed polarization as a function of wavelength.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: September 24, 2002
    Assignee: Chorum Technologies LP
    Inventors: Gan Zhou, Kuang-Yi Wu
  • Patent number: 6452702
    Abstract: An optical routing switch provides polarization-independent and low-crosstalk switching between any of a plurality of input ports and any of a plurality of output ports over a wide operating range of temperatures and wavelengths. Optical signals appearing at each input port are spatially decomposed into two orthogonally-polarized beams by a first polarization-dependent routing element (e.g., a birefringent element or polarized beamsplitter). Beyond this point, a network of optical switches are placed along the optical paths of the pair of light beams. Each optical switch includes: (1) a polarization rotator that switchably controls the polarization of the input light beams so that both of the emergent beams are either vertically or horizontally polarized, according to the control state of the device; and (2) a polarization-dependent routing element that spatially routes the light beam pair to provide physical displacement based on their state of polarization.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: September 17, 2002
    Assignee: Chorum Technologies LP
    Inventors: Kuang-Yi Wu, Jian-Yu Liu
  • Patent number: 6429962
    Abstract: An optical equalizer for use primarily with an erbium-doped fiber amplifier has an initial polarizer that convert the input beam to a predetermined polarization, followed by a series of dynamically-adjustable sinusoidal filters that provide attenuation as a sinusoidal function of beam wavelength. Each of the sinusoidal filters has a first liquid crystal cell adjustably rotating the polarization of the beam from the preceding polarizer. This is followed by a second optical element that retards the beam as a sinusoidal function of beam wavelength. For example, the second optical element can be a birefringent crystal that provided a fixed degree of retardance to the beam and a second liquid crystal cell that provides a variable degree of retardance, thereby allowing adjustment of the center frequency of the sinusoidal function. Finally, a third liquid crystal cell adjustably rotates the polarization of the beam.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: August 6, 2002
    Assignee: Chorum Technologies LP
    Inventors: Ming Xu, Tizhi Huang, Chongchang Mao, Jian-Yu Liu, Kuang-Yi Wu, Charles Wong