Patents Assigned to Chuo Spring Co., Ltd.
  • Patent number: 8460482
    Abstract: A heat-resistant alloy spring is made of a Ni-based alloy material comprising in weight %: not more than 0.1% C; not more than 1.0% Si; not more than 1.50% Mn; 13.0 to 25.0% Cr; 1.5 to 7.0% Mo; 0.5 to 4.0% Ti; 0.1 to 3.0% Al; {at least one optional element selected from the group consisting of 0.15 to 2.50% W, 0.001 to 0.020% B, 0.01 to 0.3% Zr, 0.30 to 6.00% Nb, 5.0 to 18.0% Co, and 0.03 to 2.00% Cu}; the balance being essentially Ni; and incidental impurities. The Ni-based alloy material is provided in its crystal structure with gamma prime phase [Ni3(Al, Ti)] or gamma prime phase [Ni3(Al, Ti, Nb)].
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: June 11, 2013
    Assignees: Nippon Seisen Co., Ltd., Chuo Spring Co., Ltd.
    Inventors: Yoshinori Tanimoto, Naoyuki Kawahata, Shoji Ichikawa, Hiroyuki Shiga
  • Publication number: 20080166258
    Abstract: A heat-resistant alloy spring is made of a Ni-based alloy material comprising in weight %: not more than 0.1% C; not more than 1.0% Si; not more than 1.50% Mn; 13.0 to 25.0% Cr; 1.5 to 7.0% Mo; 0.5 to 4.0% Ti; 0.1 to 3.0 % Al; {at least one optional element selected from the group consisting of 0.15 to 2.50% w, 0.001 to 0.020% B, 0.01 to 0.3% Zr, 0.30 to 6.00% Nb, 5.0 to 18.0% Co, and 0.03 to 2.00% Cu}; the balance being essentially Ni; and incidental impurities. The Ni-based alloy material is provided in its crystal structure with gamma prime phase [Ni3(Al, Ti)] or gamma prime phase [Ni3(Al, Ti, Nb)]. The gamma prime phase has an average grain diameter (d) of not less than 25 nanometers, and a hardness-diameter ratio (Hv/d) of a Vickers hardness Hv of a position at a depth of one-fourth of the entire thickness or the wire diameter from a surface of the Ni-based alloy material toward its center and the average grain diameter d(nanometer) is 5 to 25.
    Type: Application
    Filed: September 24, 2007
    Publication date: July 10, 2008
    Applicants: Nippon Seisen Co., Ltd., Chuo Spring Co., Ltd.
    Inventors: Yoshinori Tanimoto, Naoyuki Kawahata, Shoji Ichikawa, Hiroyuki Shiga
  • Publication number: 20070267112
    Abstract: The present invention provides a cold-formed spring having high fatigue strength and high corrosion fatigue strength, a specific type of steel for such a spring, and a method of manufacturing such a cold-formed coil spring. The spring according to the present invention is made from a steel material containing, in weight percentage, 0.45 to 0.52% of C, 1.80 to 2.00% of Si, 0.30 to 0.80% of Ni, 0.15 to 0.35% of Cr and 0.15 to 0.30% of V, with Fe substantially constituting the remaining percentage. A wire is produced from the steel, and the wire is subjected to a high-frequency heating process, whereby the wire is hardened at a temperature of 920 to 1040° C. for 5 to 10 seconds, and then tempered at a temperature of 450 to 550° C. for 5 to 20 seconds so that its hardness becomes 50.5 to 53.5 HRC. Finally, the wire undergoes a shot peening process so that its residual stress at 0.2 mm depth from the surface becomes ?600 MPa or higher.
    Type: Application
    Filed: July 27, 2007
    Publication date: November 22, 2007
    Applicant: Chuo Spring Co., Ltd.
    Inventors: Hidetoshi Yoshikawa, Takayuki Sakakibara, Masami Wakita
  • Publication number: 20040238074
    Abstract: The present invention provides a cold-formed spring having high fatigue strength and high corrosion fatigue strength, a specific type of steel for such a spring, and a method of manufacturing such a cold-formed coil spring. The spring according to the present invention is made from a steel material containing, in weight percentage, 0.45 to 0.52% of C, 1.80 to 2.00% of Si, 0.30 to 0.80% of Ni, 0.15 to 0.35% of Cr and 0.15 to 0.30% of V, with Fe substantially constituting the remaining percentage. A wire is produced from the steel, and the wire is subjected to a high-frequency heating process, whereby the wire is hardened at a temperature of 920 to 1040° C. for 5 to 10 seconds, and then tempered at a temperature of 450 to 550° C. for 5 to 20 seconds so that its hardness becomes 50.5 to 53.5 HRC. Finally, the wire undergoes a shot peening process so that its residual stress at 0.2 mm depth from the surface becomes −600 MPa or higher.
    Type: Application
    Filed: April 14, 2004
    Publication date: December 2, 2004
    Applicant: CHUO SPRING CO., LTD.
    Inventors: Hidetoshi Yoshikawa, Takayuki Sakakibara, Masami Wakita
  • Patent number: 4500099
    Abstract: An elastic supporting and sealing member, for mutually supporting a first body and a second body, and for sealing the gap between the first body and the second body, includes a first portion and a second portion of wire net and a piece of thermal foaming material, between the first and the second wire net portion, which expands and foams when it is heated up. A method of making such a member includes the steps of flattening a tubular shaped piece of wire net, and of introducing a strip shaped piece of such thermal foaming material between the two sides of the flattened tube of wire net, so that the longitudinal directions of the strip shaped piece of thermal foaming material and of the flattened wire net tube substantially coincide.
    Type: Grant
    Filed: March 4, 1983
    Date of Patent: February 19, 1985
    Assignees: Toyota Jidosha Kabushiki Kaisha, Chuo Spring Co., Ltd.
    Inventors: Katsutoshi Kitagawa, Kiyoshi Isogai, Nobuo Ohmori, Naka Takita, Makoto Okamoto, Itsuo Koga, Kazuo Ito
  • Patent number: 4088156
    Abstract: An improved flexible conduit assembly comprising a flexible conduit including an inner tube of synthetic resin, a plurality of wires wound helically about the inner tube, an outer casing enclosing the wires and the inner tube and a motion-transmitting wire core element, and an improved holder wherein a resilient and plato-resistant end anchor obtained by reversely bending the wires is embedded by injection molding synthetic resin against an end of the conduit, thereby making possible remarkably strong resistance against a pulling force.
    Type: Grant
    Filed: August 2, 1976
    Date of Patent: May 9, 1978
    Assignees: Oiles Industry Co., Ltd., Chuo Spring Co., Ltd.
    Inventors: Shinsuke Kubo, Hiroyuki Kuzunishi