Abstract: A collision avoidance system (CAS) airborne unit onboard an aerial platform of a first priority level includes a navigational module to determine current position of the aerial platform; a communication module to intermittently transmit a localization transmission, and to receive intermittently transmitted localization transmissions from another CAS airborne unit on-board another lower priority level aerial platform; and a processor to calculate, based on the received intermittently transmitted localization transmissions and on a current location, speed and heading of the CAS airborne unit, a collision risk between the aerial platform and the other aerial platform, and to generate one or a plurality of steering commands and cause a transmission of one or a plurality of a steering commands to be performed by the other aerial platform and to cause the steering commands to be transmitted by the communication module to the other CAS airborne unit.
Abstract: A collision avoidance system (CAS) airborne unit onboard an aerial platform of a first priority level includes a navigational module to determine current position of the aerial platform; a communication module to intermittently transmit a localization transmission, and to receive intermittently transmitted localization transmissions from another CAS airborne unit on-board another lower priority level aerial platform; and a processor to calculate, based on the received intermittently transmitted localization transmissions and on a current location, speed and heading of the CAS airborne unit, a collision risk between the aerial platform and the other aerial platform, and to generate one or a plurality of steering commands and cause a transmission of one or a plurality of a steering commands to be performed by the other aerial platform and to cause the steering commands to be transmitted by the communication module to the other CAS airborne unit.
Abstract: A system and method for autonomous dynamic air traffic management. The method includes sensing a current location of a flying platform using at least one of a plurality of positioning sensors onboard the flying platform, transmitting location transmissions and receiving location transmissions from other flying platforms, determining from the received location transmissions and the sensed current location whether the flying platform and another flying platform are flying in a mutually intentional flight pattern or in a mutually unintentional flight pattern, based on one or more indications; refraining from alerting when the flying platform and the other flying platform fly close to each other within a predetermined range when flying in a mutually intentional flight pattern; detecting a risk of collision between the flying platform and said another of said one or a plurality of flying platforms; and generating an evading action instruction for the flying platform to avoid the collision.
Abstract: A collision avoidance system (CAS) airborne unit onboard an aerial platform of a first priority level includes a navigational module to determine current position of the aerial platform; a communication module to intermittently transmit a localization transmission, and to receive intermittently transmitted localization transmissions from another CAS airborne unit on-board another lower priority level aerial platform; and a processor to calculate, based on the received intermittently transmitted localization transmissions and on a current location, speed and heading of the CAS airborne unit, a collision risk between the aerial platform and the other aerial platform, and to generate one or a plurality of steering commands and cause a transmission of one or a plurality of a steering commands to be performed by the other aerial platform and to cause the steering commands to be transmitted by the communication module to the other CAS airborne unit.