Patents Assigned to Cincinnati Electronics Corporation
  • Publication number: 20190296649
    Abstract: Embodiments described herein are directed to an energy-harvesting circuit configured to harvest energy from a power converter circuit within a switch mode power supply and generate a positive, a negative or a bipolar power supply rail to power load circuitry. The energy-harvesting circuit includes a transformer, a coupling capacitor, a diode and a capacitor. The transformer has a primary winding, a secondary winding and a magnetic core shared therebetween. The primary winding is electrically connected between a drain and a source of a transistor switch connected to the power converter circuit. The coupling capacitor is electrically connected between the drain and the primary winding and configured to provide a reset mechanism for the magnetic core. The anode of the diode is electrically connected to the secondary winding. The capacitor is electrically connected in series with the cathode of the diode and in parallel with the load circuitry.
    Type: Application
    Filed: November 20, 2018
    Publication date: September 26, 2019
    Applicant: L3 Cincinnati Electronics Corporation
    Inventor: Justin Graves
  • Patent number: 10416470
    Abstract: Systems and methods for characterizing an obscurant and imaging a target are disclosed. In one embodiment, a method of imaging a target includes characterizing at least one obscurant present in an environment, and determining, based on the at least one characterized obscurant, one or more of the following: one or more wavelengths corresponding to the at least one obscurant, a polarization state corresponding to the at least one obscurant, and a sensor exposure time corresponding to the at least one obscurant. The method further includes adjusting one or more parameters of an imagining system based at least in part on a characterization of the at least one obscurant.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 17, 2019
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventors: Harish P. Hiriyannaiah, Nansheng Tang
  • Patent number: 10236777
    Abstract: Magnetically isolated feedback circuits and regulated power supplies are disclosed. In some embodiments, a magnetically isolated feedback circuit includes an isolated gate drive circuit and a forward converter circuit. The isolated gate drive circuit is operable to receive a plurality of pulses, wherein the isolated gate drive circuit produces a plurality of isolated bi-polar pulses from the plurality of pulses. The forward converter circuit is electrically coupled to the isolated gate drive circuit and is operable to be electrically coupled to a load. The plurality of isolated bi-polar pulses causes the forward converter circuit to sample a voltage at the load as a sampled voltage. The forward converter circuit is operable to provide the sampled voltage to a feedback input of a pulse width modulator.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: March 19, 2019
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventor: Justin Graves
  • Publication number: 20190052164
    Abstract: Magnetically isolated feedback circuits and regulated power supplies are disclosed. In some embodiments, a magnetically isolated feedback circuit includes an isolated gate drive circuit and a forward converter circuit. The isolated gate drive circuit is operable to receive a plurality of pulses, wherein the isolated gate drive circuit produces a plurality of isolated bi-polar pulses from the plurality of pulses. The forward converter circuit is electrically coupled to the isolated gate drive circuit and is operable to be electrically coupled to a load. The plurality of isolated bi-polar pulses causes the forward converter circuit to sample a voltage at the load as a sampled voltage. The forward converter circuit is operable to provide the sampled voltage to a feedback input of a pulse width modulator.
    Type: Application
    Filed: January 22, 2018
    Publication date: February 14, 2019
    Applicant: L3 Cincinnati Electronics Corporation
    Inventor: Justin Graves
  • Patent number: 10170653
    Abstract: Embodiments of the present disclosure are directed to infrared detector devices incorporating a tunneling structure. In one embodiment, an infrared detector device includes a first contact layer, an absorber layer adjacent to the first contact layer, and a tunneling structure including a barrier layer adjacent to the absorber layer and a second contact layer adjacent to the barrier layer. The barrier layer has a tailored valence band offset such that a valence band offset of the barrier layer at the interface between the absorber layer and the barrier layer is substantially aligned with the valence band offset of the absorber layer, and the valence band offset of the barrier layer at the interface between the barrier layer and the second contact layer is above a conduction band offset of the second contact layer.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: January 1, 2019
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventor: Yajun Wei
  • Publication number: 20180372548
    Abstract: Satellite onboard imaging systems having a look-down view and a toroidal view of the Earth are disclosed. In one embodiment, a satellite onboard imaging systems include an infrared sensing system and a controller. The infrared sensing system includes a first imager configured to have a first field of view that observes a look-down view of the Earth from a satellite and a second imager configured to have a second field of view that observes a toroidal view of the Earth centered at the satellite. The controller is coupled to the first imager and the second imager and operable to process image data from the first imager and the second imager. The controller is further operable to output indications of thermal energy of an identical, or different objects based on the first thermal image signal, the second thermal image signal, or both.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Applicant: L3 Cincinnati Electronics Corporation
    Inventors: Gregory GOSIAN, Dave HARTUP
  • Patent number: 10153682
    Abstract: Self-centering electromagnetic transducers, such as linear motors and generators, are disclosed. In one embodiment, an electromagnetic transducer includes an outer yoke made of a ferromagnetic material, and a coil assembly including a plurality of loops of electrically conductive wire, wherein the coil assembly is substantially surrounded by the outer yoke. The electromagnetic transducer further includes a magnet, and an inner yoke made of ferromagnetic material. The magnet is disposed within the outer yoke such that the coil assembly surrounds the magnet. The inner yoke is disposed within the magnet, and the magnet is free to translate. The electromagnetic transducer further includes at least one high-reluctance zone positioned within the outer yoke and/or the inner yoke. In some embodiments, the electromagnetic transducer includes one or more actuators that vary a width of one or more high-reluctance zones to change a spring rate of the electromagnetic transducer.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: December 11, 2018
    Assignee: L3 Cincinnati Electronics Corporation
    Inventor: Andreas Fiedler
  • Patent number: 10121922
    Abstract: Embodiments of the present disclosure are directed to infrared detector devices incorporating a tunneling structure. In one embodiment, an infrared detector device includes a first contact layer, an absorber layer adjacent to the first contact layer, and a tunneling structure including a barrier layer adjacent to the absorber layer and a second contact layer adjacent to the barrier layer. The barrier layer has a tailored valence band offset such that a valence band offset of the barrier layer at the interface between the absorber layer and the barrier layer is substantially aligned with the valence band offset of the absorber layer, and the valence band offset of the barrier layer at the interface between the barrier layer and the second contact layer is above a conduction band offset of the second contact layer.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 6, 2018
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventor: Yajun Wei
  • Patent number: 10121921
    Abstract: Embodiments of the present disclosure are directed to infrared detector devices incorporating a tunneling structure. In one embodiment, an infrared detector device includes a first contact layer, an absorber layer adjacent to the first contact layer, and a tunneling structure including a barrier layer adjacent to the absorber layer and a second contact layer adjacent to the barrier layer. The barrier layer has a tailored valence band offset such that a valence band offset of the barrier layer at the interface between the absorber layer and the barrier layer is substantially aligned with the valence band offset of the absorber layer, and the valence band offset of the barrier layer at the interface between the barrier layer and the second contact layer is above a conduction band offset of the second contact layer.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: November 6, 2018
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventor: Yajun Wei
  • Publication number: 20180294309
    Abstract: Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength is a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
    Type: Application
    Filed: May 4, 2018
    Publication date: October 11, 2018
    Applicant: L3 Cincinnati Electronics Corporation
    Inventors: Yajun Wei, Steven Allen, Michael Garter, Mark Greiner, David Forrai, Darrel Endres
  • Publication number: 20180294301
    Abstract: Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength is a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
    Type: Application
    Filed: May 4, 2018
    Publication date: October 11, 2018
    Applicant: L3 Cincinnati Electronics Corporation
    Inventors: Yajun Wei, Steven Allen, Michael Garter, Mark Greiner, David Forrai, Darrel Endres, Robert Jones
  • Patent number: 9939321
    Abstract: A hyperspectral optical element for monolithic detectors is provided. In one embodiment, for example a hyperspectral optical element includes a faceplate layer adapted to be mounted on top of a monolithic detector. The faceplate layer comprises a reflective inner surface. A notched layer includes a plurality of notched surfaces and is mounted to the faceplate layer. The notched surfaces oppose the reflective inner surface of the faceplate and define a plurality of variable depth cavities between the reflective inner surface of the faceplate layer and the plurality of notched surfaces of the notched layer. The faceplate layer and the notched layer are substantially transparent to a received signal and the plurality of variable depth cavities provides resonant cavities for one or more wavelengths of the received signal.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: April 10, 2018
    Assignee: L-3 COMMUNICATIONS CINCINNATI ELECTRONICS CORPORATION
    Inventors: Michael Bartosewcz, Tristan Van Hoorebeke, Phillip Michael Henry, Anthony William Sarto
  • Publication number: 20180076345
    Abstract: Embodiments of the present disclosure are directed to infrared detector devices incorporating a tunneling structure. In one embodiment, an infrared detector device includes a first contact layer, an absorber layer adjacent to the first contact layer, and a tunneling structure including a barrier layer adjacent to the absorber layer and a second contact layer adjacent to the barrier layer. The barrier layer has a tailored valence band offset such that a valence band offset of the barrier layer at the interface between the absorber layer and the barrier layer is substantially aligned with the valence band offset of the absorber layer, and the valence band offset of the barrier layer at the interface between the barrier layer and the second contact layer is above a conduction band offset of the second contact layer.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 15, 2018
    Applicant: L-3 Communications Cincinnati Electronics Corporation
    Inventor: Yajun Wei
  • Publication number: 20180069140
    Abstract: Embodiments of the present disclosure are directed to infrared detector devices incorporating a tunneling structure. In one embodiment, an infrared detector device includes a first contact layer, an absorber layer adjacent to the first contact layer, and a tunneling structure including a barrier layer adjacent to the absorber layer and a second contact layer adjacent to the barrier layer. The barrier layer has a tailored valence band offset such that a valence band offset of the barrier layer at the interface between the absorber layer and the barrier layer is substantially aligned with the valence band offset of the absorber layer, and the valence band offset of the barrier layer at the interface between the barrier layer and the second contact layer is above a conduction band offset of the second contact layer.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Applicant: L-3 Communications Cincinnati Electronics Corporation
    Inventor: Yajun Wei
  • Publication number: 20180052333
    Abstract: Systems and methods for characterizing an obscurant and imaging a target are disclosed. In one embodiment, a method of imaging a target includes characterizing at least one obscurant present in an environment, and determining, based on the at least one characterized obscurant, one or more of the following: one or more wavelengths corresponding to the at least one obscurant, a polarization state corresponding to the at least one obscurant, and a sensor exposure time corresponding to the at least one obscurant. The method further includes adjusting one or more parameters of an imagining system based at least in part on a characterization of the at least one obscurant.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 22, 2018
    Applicant: L-3 Communications Cincinnati Electronics Corporation
    Inventors: HARISH P. HIRIYANNAIAH, NANSHENG TANG
  • Patent number: 9887307
    Abstract: Diode barrier infrared detector devices and superlattice barrier structures are disclosed. In one embodiment, a diode barrier infrared detector device includes a first contact layer, an absorber layer adjacent to the first contact layer, and a barrier layer adjacent to the absorber layer, and a second contact layer adjacent to the barrier layer. The barrier layer includes a diode structure formed by a p-n junction formed within the barrier layer. The barrier layer may be such that there is substantially no barrier to minority carrier holes. In another embodiment, a diode barrier infrared detector device includes a first contact layer, an absorber layer adjacent to the first contact layer, a barrier layer adjacent to the absorber layer, and a diode structure adjacent to the barrier layer. The diode structure includes a second contact layer.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 6, 2018
    Assignee: L-3 COMMUNICATIONS CINCINNATI ELECTRONICS CORPORATION
    Inventor: Yajun Wei
  • Patent number: 9824295
    Abstract: Systems and methods for characterizing an obscurant and imaging a target are disclosed. In one embodiment, a method of imaging a target includes characterizing at least one obscurant present in an environment, and determining, based on the at least one characterized obscurant, one or more of the following: one or more wavelengths corresponding to the at least one obscurant, a polarization state corresponding to the at least one obscurant, and a sensor exposure time corresponding to the at least one obscurant. The method further includes adjusting one or more parameters of an imagining system based at least in part on a characterization of the at least one obscurant.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: November 21, 2017
    Assignee: L-3 COMMUNICATIONS CINCINNATI ELECTRONICS CORPORATION
    Inventors: Harish P. Hiriyannaiah, Nansheng Tang
  • Publication number: 20170294826
    Abstract: Self-centering electromagnetic transducers, such as linear motors and generators, are disclosed. In one embodiment, an electromagnetic transducer includes an outer yoke made of a ferromagnetic material, and a coil assembly including a plurality of loops of electrically conductive wire, wherein the coil assembly is substantially surrounded by the outer yoke. The electromagnetic transducer further includes a magnet, and an inner yoke made of ferromagnetic material. The magnet is disposed within the outer yoke such that the coil assembly surrounds the magnet. The inner yoke is disposed within the magnet, and the magnet is free to translate. The electromagnetic transducer further includes at least one high-reluctance zone positioned within the outer yoke and/or the inner yoke. In some embodiments, the electromagnetic transducer includes one or more actuators that vary a width of one or more high-reluctance zones to change a spring rate of the electromagnetic transducer.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 12, 2017
    Applicant: L-3 Communications Cincinnati Electronics Corporation
    Inventor: Andreas Fiedler
  • Publication number: 20170243079
    Abstract: Systems and methods for characterizing an obscurant and imaging a target are disclosed. In one embodiment, a method of imaging a target includes characterizing at least one obscurant present in an environment, and determining, based on the at least one characterized obscurant, one or more of the following: one or more wavelengths corresponding to the at least one obscurant, a polarization state corresponding to the at least one obscurant, and a sensor exposure time corresponding to the at least one obscurant. The method further includes adjusting one or more parameters of an imagining system based at least in part on a characterization of the at least one obscurant.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 24, 2017
    Applicant: L-3 Communications Cincinnati Electronics Corporation
    Inventors: HARISH P. HIRIYANNAIAH, NANSHENG TANG
  • Publication number: 20170227398
    Abstract: A hyperspectral optical element for monolithic detectors is provided. In one embodiment, for example a hyperspectral optical element includes a faceplate layer adapted to be mounted on top of a monolithic detector. The faceplate layer comprises a reflective inner surface. A notched layer includes a plurality of notched surfaces and is mounted to the faceplate layer. The notched surfaces oppose the reflective inner surface of the faceplate and define a plurality of variable depth cavities between the reflective inner surface of the faceplate layer and the plurality of notched surfaces of the notched layer. The faceplate layer and the notched layer are substantially transparent to a received signal and the plurality of variable depth cavities provides resonant cavities for one or more wavelengths of the received signal.
    Type: Application
    Filed: September 12, 2016
    Publication date: August 10, 2017
    Applicant: L-3 COMMUNICATIONS CINCINNATI ELECTRONICS CORPORATION
    Inventors: Michael BARTOSEWCZ, Tristan VAN HOOREBEKE, Phillip Michael Henry, Anthony William Sarto