Patents Assigned to Cionic, Inc.
-
Patent number: 12172011Abstract: A mobility augmentation system assists a user's movement by determining a corresponding electrical stimulation for the movement. A wearable stimulation array includes sensors, electrodes, an electrode multiplexer, and a controller that executes the mobility augmentation system. The sensors measure movement data, and the mobility augmentation system applies a movement model to the measured movement data. The model can determine different electrical actuation instructions depending on the movement stimulated. For example, to stimulate a knee flexion, the movement model output enables a first set of the electrodes to operate as cathodes and a second set of electrodes to operate as anodes. To stimulate a knee extension, the first set of electrodes can be enabled to operate as anodes and a third set of electrodes as cathodes. The user can provide feedback of the applied stimulation, which the system can use to retrain the model and optimize the stimulation to the user.Type: GrantFiled: August 9, 2021Date of Patent: December 24, 2024Assignee: Cionic, Inc.Inventors: Jeremiah Robison, Lina Avancini Colucci, Ren Gibbons
-
Patent number: 12005573Abstract: A mobility augmentation system monitors a user's motor intent data and augments the user's mobility based on the monitored motor intent data. A machine-learned model is trained to identify an intended movement based on the monitored motor intent data. The machine-learned model may be trained based on generalized or specific motor intent data (e.g., user-specific motor intent data). A machine-learned model initially trained on generalized motor intent data may be re-trained on user-specific motor intent data such that the machine-learned model is optimized to the movements of the user. The system uses the machine-learned model to identify a difference between the user's monitored movement and target movement signals. Based on the identified difference, the system determines actuation signals to augment the user's movement. The actuation signals determined can be an adjustment to a currently applied actuation such that the system optimizes the actuation strategy during application.Type: GrantFiled: December 6, 2020Date of Patent: June 11, 2024Assignee: Cionic, Inc.Inventors: Jeremiah Robison, Michael Dean Achelis, Lina Avancini Colucci, Sidney Rafael Primas, Andrew James Weitz
-
Patent number: 11957605Abstract: A mobility augmentation system monitors data representative of a user's motor intent and augments the user's mobility based on the monitored motor intent data. A machine-learned model is trained to identify an intended movement based on the monitored motor intent data. The machine-learned model may be trained based on generalized or specific motor intent data (e.g., user-specific motor intent data). A machine-learned model initially trained on generalized motor intent data may be re-trained on user-specific motor intent data such that the machine-learned model is optimized to the movements of the user. The system uses the machine-learned model to identify a difference between the user's monitored movement and target movement signals. Based on the identified difference, the system determines actuation signals to augment the user's movement. The actuation signals determined can be an adjustment to a currently applied actuation such that the system optimizes the actuation strategy during application.Type: GrantFiled: December 6, 2020Date of Patent: April 16, 2024Assignee: Cionic, Inc.Inventors: Jeremiah Robison, Michael Dean Achelis, Lina Avancini Colucci, Sidney Rafael Primas, Andrew James Weitz
-
Patent number: 11931571Abstract: A mobility augmentation system assists a user's movement by determining a corresponding electrical stimulation for the movement. A wearable stimulation array includes sensors, electrodes, an electrode multiplexer, and a controller that executes the mobility augmentation system. The sensors measure movement data, and the mobility augmentation system applies a movement model to the measured movement data. The model can determine different electrical actuation instructions depending on the movement stimulated. For example, to stimulate a knee flexion, the movement model output enables a first set of the electrodes to operate as cathodes and a second set of electrodes to operate as anodes. To stimulate a knee extension, the first set of electrodes can be enabled to operate as anodes and a third set of electrodes as cathodes. The user can provide feedback of the applied stimulation, which the system can use to retrain the model and optimize the stimulation to the user.Type: GrantFiled: August 9, 2021Date of Patent: March 19, 2024Assignee: Cionic, Inc.Inventors: Jeremiah Robison, Lina Avancini Colucci, Ren Gibbons