Abstract: Systems and processes for generating a single cryptocurrency address mapping space for a plurality of cryptocurrencies including a global map of activity for the plurality of cryptocurrencies by clustering different addresses used in separate cryptocurrency transactions that are controlled by a same individual or entity are disclosed.
Abstract: Embodiments include systems and methods for determining cryptographic address for a same entity across a plurality of distributed blockchain networks that use a same elliptic curve. In some embodiments the method includes computing a cryptographic address hash of the first cryptographic address using the cryptographic public key of the first cryptographic address, the cryptographic address hash being a common representation of the first entity on the first distributed blockchain network and the cryptographic address hash being derived via a cryptographic one-way hash function, the cryptographic one-way hash function following a protocol of performing a function on the cryptographic public key, the cryptographic public key being used on the first distributed blockchain network and a second distributed blockchain network, the first distributed blockchain network and the second distributed blockchain network using the same elliptic curve.
Abstract: Systems and processes for generating a single cryptocurrency address mapping space for a plurality of cryptocurrencies including a global map of activity for the plurality of cryptocurrencies by clustering different addresses used in separate cryptocurrency transactions that are controlled by a same individual or entity are disclosed.
Abstract: Systems and methods of forensic analysis of cryptocurrency transactions are described herein. A method can include obtaining fiat-based transaction data from a bank account, identifying a purchase of a cryptocurrency from fiat-based transaction data and cryptocurrency exchange trade history data from a cryptocurrency exchange where the cryptocurrency was purchased, obtaining cryptocurrency-based transaction data that identifies downstream cryptocurrency transaction data where the cryptocurrency was transferred out of the cryptocurrency exchange; and scoring a user who purchased or used the cryptocurrency based on the fiat-based transaction data, the cryptocurrency exchange trade history data, and the cryptocurrency-based transaction data.
Type:
Grant
Filed:
February 7, 2022
Date of Patent:
July 2, 2024
Assignee:
CipherTrace, Inc.
Inventors:
David Alexander Jevans, Shannon Holland
Abstract: Cryptocurrency based malware and ransomware detection systems and methods are disclosed herein. An example method includes analyzing a plurality of malware or ransomware attacks to determine cryptocurrency payment address of malware or ransomware attacks, building a malware or ransomware attack database with the cryptocurrency payment addresses of the plurality of malware or ransomware attacks, identifying a proposed cryptocurrency transaction that includes an address that is included in the malware or ransomware attack database, and denying the proposed cryptocurrency transaction.
Abstract: Systems and methods for automatically searching crypto currency transaction paths and discovering transaction flows between individuals and identifiable services, trim or prune out irrelevant transactions and addresses, and present the relevant information as an identifiable transaction chain are provided herein. In various embodiments the present technology dramatically increases the productivity of investigators and auditors researching crypto currency transactions.
Type:
Grant
Filed:
May 17, 2019
Date of Patent:
December 5, 2023
Assignee:
CipherTrace, Inc.
Inventors:
David Jevans, Shannon Holland, Stephen Ryan
Abstract: Cryptocurrency based malware and ransomware detection systems and methods are disclosed herein. An example method includes analyzing a plurality of malware or ransomware attacks to determine cryptocurrency payment address of malware or ransomware attacks, building a malware or ransomware attack database with the cryptocurrency payment addresses of the plurality of malware or ransomware attacks, identifying a proposed cryptocurrency transaction that includes an address that is included in the malware or ransomware attack database, and denying the proposed cryptocurrency transaction.
Abstract: Embodiments include systems and methods for determining cryptographic address for a same entity across a plurality of distributed blockchain networks that use a same elliptic curve. In some embodiments the method includes computing a cryptographic address hash of the first cryptographic address using the cryptographic public key of the first cryptographic address, the cryptographic address hash being a common representation of the first entity on the first distributed blockchain network and the cryptographic address hash being derived via a cryptographic one-way hash function, the cryptographic one-way hash function following a protocol of performing a function on the cryptographic public key, the cryptographic public key being used on the first distributed blockchain network and a second distributed blockchain network, the first distributed blockchain network and the second distributed blockchain network using the same elliptic curve.
Abstract: Provided herein are exemplary systems and methods for creating a secure self-validating network of blockchain/distributed ledger participants. Some exemplary mechanisms support self-validation, mutual-validation, external-validation and privacy controls. Such mechanisms enable the deployment and continued operation of large scale blockchain and distributed ledger systems with a self-certifying security system. They create the ability for rules to be codified to control the rights, privileges and access of nodes depending on their self-certification and external-certification. Also provided is an audit trail of these certifications which can be used for liability claims, insurance, security analytics and forensics.