Patents Assigned to ClariPhy Communications, Inc.
  • Patent number: 9036751
    Abstract: A receiver applies a calibration method to compensate for skew between input channels. The receiver skew is estimated by observing the coefficients of an adaptive equalizer which adjusts the coefficients based on time-varying properties of the multi-channel input signal. The receiver skew is compensated by programming the phase of the sampling clocks for the different channels. Furthermore, during real-time operation of the receiver, channel diagnostics is performed to automatically estimate differential group delay and/or other channel characteristics based on the equalizer coefficients using a frequency averaging or polarization averaging approach. Framer information can furthermore be utilized to estimate differential group delay that is an integer multiple of the symbol rate. Additionally, a DSP reset may be performed when substantial signal degradation is detected based on the channel diagnostics information.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 19, 2015
    Assignee: ClariPhy Communications, Inc.
    Inventors: Shih Cheng Wang, Martin Serra, Cesar Sanchez PeƱak, Mario Rafael Hueda, Alfredo Taddei, Diego Ernesto Crivelli, Hugo Santiago Carrer, Oscar Ernesto Agazzi
  • Patent number: 8947281
    Abstract: Apparatus and methods for digital-to-analog conversion are disclosed. In one embodiment, an electronic system includes a bias circuit and a digital-to-analog converter (DAC) including an input that receives a digital input signal and an output that drives a transmission line. The digital input signal can be used to control a magnitude and polarity of an output current of the DAC. The DAC further includes one or more p-type metal oxide semiconductor (PMOS) termination transistors that receive a first bias voltage from the bias circuit and one or more n-type metal oxide semiconductor (NMOS) termination transistors that receive a second bias voltage from the bias circuit. The bias circuit controls the voltage levels of the first and second bias voltages to control the termination transistors' small signal resistance to actively terminate the DAC's output.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 3, 2015
    Assignee: ClariPhy Communications, Inc.
    Inventors: Morteza Azarmnia, Vadim Gutnik, William Vanscheik
  • Patent number: 8929747
    Abstract: A transmitter reduces or minimizes pulse narrowing. In one approach, an optical transmitter is designed to transmit data over an optical fiber at a specified data rate using on-off keying. The transmitter includes a pre-converter electrical channel and a limiting E/O converter. The pre-converter electrical channel produces a pre-converter signal that drives the limiting E/O converter. The pre-converter electrical channel is designed to reduce pulse narrowing in the pre-converter signal. In one implementation, the pre-converter electrical channel includes a pre-emphasis filter that is designed to minimize pulse width shrinkage.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: January 6, 2015
    Assignee: ClariPhy Communications, Inc.
    Inventor: Thomas A. Lindsay
  • Patent number: 8918694
    Abstract: A decoder performs forward error correction based on quasi-cyclic regular column-partition low density parity check codes. A method for designing the parity check matrix reduces the number of short-cycles of the matrix to increase performance. An adaptive quantization post-processing technique further improves performance by eliminating error floors associated with the decoding. A parallel decoder architecture performs iterative decoding using a parallel pipelined architecture.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: December 23, 2014
    Assignee: ClariPhy Communications, Inc.
    Inventors: Damian Alfonso Morero, Mario Alejandro Castrillon, Teodoro Ariel Goette, Matias German Schnidrig, Facundo Abel Alcides Ramos, Mario Rafael Hueda
  • Patent number: 8886055
    Abstract: An optical communication device (e.g., a transmitter, receiver, or transceiver) includes a control input for selecting between operating the optical communication device in a normal operation mode for communicating data according to a first data rate and operating the optical transmitter in a reduced data rate operation mode for communicating data according to a second data rate lower than the first data rate. The optical communication device includes a forward error correction encoder and/or decoder and a modulator and/or demodulator. When operating in the reduced data rate mode, data is re-formatted for compatibility with the same forward error correction scheme and modulation/demodulation scheme used in the normal data rate mode, thereby enabling the reduced data rate mode without significant architectural overhead.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: November 11, 2014
    Assignee: ClariPhy Communications, Inc.
    Inventor: Damian Alfonso Morero
  • Patent number: 8831074
    Abstract: A receiver (or transceiver) is selectable between a Gaussian mode and a non-Gaussian mode. In the non-Gaussian mode, a transformation block applies a non-linear transformation to signal samples to convert non-Gaussian noise in the signal samples to Gaussian or approximately Gaussian noise. In the Gaussian mode, the transformation block is bypassed. Samples are equalized using an equalizer configured to operate with a Gaussian or approximately Gaussian channel.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: September 9, 2014
    Assignee: Clariphy Communications, Inc.
    Inventors: Oscar E. Agazzi, Diego E. Crivelli, Hugo S. Carrer, Mario R. Hueda, German C. Luna, Carl Grace
  • Publication number: 20140186027
    Abstract: A transmitter for a communications link is tested by using a (software) simulation of a reference channel and/or a reference receiver to test the transmitter. In one embodiment for optical fiber communications links, a data test pattern is applied to the transmitter under test and the resulting optical output is captured, for example by a sampling oscilloscope. The captured waveform is subsequently processed by the software simulation, in order to simulate propagation of the optical signal through the reference channel and/or reference receiver. A performance metric for the transmitter is calculated based on the processed waveform.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 3, 2014
    Applicant: CLARIPHY COMMUNICATIONS, INC.
    Inventor: Thomas A. Lindsay
  • Patent number: 8761609
    Abstract: A receiver for fiber optic communications.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: June 24, 2014
    Assignee: ClariPhy Communications, Inc.
    Inventors: Oscar E. Agazzi, Diego E. Crivelli, Hugo S. Carrer, Mario R. Hueda, Martin I. del Barco, Pablo Gianni, Ariel Pola, Elvio Serrano, Alfredo Taddei, Alejandro Castrillon, Martin Serra, Ramiro Matteoda
  • Publication number: 20140161440
    Abstract: A receiver for a communications link includes a receiver module and a host receiver. These two components can be tested independently. In one embodiment, the receiver module is characterized with respect to noise and distortion. The noise performance can be determined by comparing input and output signals of the receiver module, to determine the relative noise of the receiver module. The distortion performance can be determined by comparing the distortion of input and output signals of the receiver module, using a reference host receiver that includes an equalizer. The host receiver can be tested by using a reference receiver module.
    Type: Application
    Filed: July 29, 2013
    Publication date: June 12, 2014
    Applicant: ClariPhy Communications, Inc.
    Inventors: Thomas A. Lindsay, Norman L. Swenson, Paul Voois
  • Patent number: 8639112
    Abstract: A transmitter for a communications link is tested by using a (software) simulation of a reference channel and/or a reference receiver to test the transmitter. In one embodiment for optical fiber communications links, a data test pattern is applied to the transmitter under test and the resulting optical output is captured, for example by a sampling oscilloscope. The captured waveform is subsequently processed by the software simulation, in order to simulate propagation of the optical signal through the reference channel and/or reference receiver. A performance metric for the transmitter is calculated based on the processed waveform.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: January 28, 2014
    Assignee: ClariPhy Communications, Inc.
    Inventor: Thomas A. Lindsay
  • Patent number: 8498535
    Abstract: A receiver for a communications link includes a receiver module and a host receiver. These two components can be tested independently. In one embodiment, the receiver module is characterized with respect to noise and distortion. The noise performance can be determined by comparing input and output signals of the receiver module, to determine the relative noise of the receiver module. The distortion performance can be determined by comparing the distortion of input and output signals of the receiver module, using a reference host receiver that includes an equalizer. The host receiver can be tested by using a reference receiver module.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: July 30, 2013
    Assignee: Clariphy Communications, Inc.
    Inventors: Thomas A. Linsday, Norman L. Swenson, Paul Voois
  • Patent number: 8488726
    Abstract: A closed-form parametric approach to channel-estimation is provided. In one aspect, a specific parametric expression is presented for the received signal pdf that accurately models the behavior of the received signal in IM/DD optical channels. The corresponding parametric channel-estimation approach simplifies the design of MLSE receivers. The general technique lends itself well to the estimation of the signal pdf in situations where there are multiple sources of noise with different distributions, such as ASE noise, together with Gaussian and quantization noise, and signal-dependent noise, for example.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: July 16, 2013
    Assignee: Clariphy Communications, Inc.
    Inventors: Mario R. Hueda, Diego E. Crivelli, Hugo S. Carrer, Oscar E. Agazzi
  • Patent number: 8483343
    Abstract: A receiver (e.g., for a 10 G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: July 9, 2013
    Assignee: ClariPhy Communications, Inc.
    Inventors: Oscar E. Agazzi, Diego E. Crivelli, Hugo S. Carrer, Mario R. Hueda, German C. Luna, Carl Grace
  • Patent number: 8265134
    Abstract: A system includes a time-interleaved device. An equalizer effectively can apply different equalization to different interleaved channels. For convenience, these equalizers will be referred to as multi-channel equalizers. In one aspect, an apparatus includes an interleaved device having M interleaved channels, and a multi-channel equalizer coupled to the interleaved device. The multi-channel equalizer is capable of applying a different equalization to different interleaved channels, thus compensating for channel-dependent impairments.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: September 11, 2012
    Assignee: Clariphy Communications, Inc.
    Inventors: Oscar Ernesto Agazzi, Diego Ernesto Crivelli, Hugo Santiago Carrer, Mario Rafael Hueda, German Cesar Augusto Luna
  • Patent number: 8254781
    Abstract: A receiver for a communications link includes a receiver module and a host receiver. These two components can be tested independently. In one embodiment, the receiver module is characterized with respect to noise and distortion. The noise performance can be determined by comparing input and output signals of the receiver module, to determine the relative noise of the receiver module. The distortion performance can be determined by comparing the distortion of input and output signals of the receiver module, using a reference host receiver that includes an equalizer. The host receiver can be tested by using a reference receiver module.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: August 28, 2012
    Assignee: ClariPhy Communications, Inc.
    Inventors: Thomas A. Lindsay, Norman L. Swenson, Paul Voois
  • Publication number: 20120189300
    Abstract: A receiver for a communications link includes a receiver module and a host receiver. These two components can be tested independently. In one embodiment, the receiver module is characterized with respect to noise and distortion. The noise performance can be determined by comparing input and output signals of the receiver module, to determine the relative noise of the receiver module. The distortion performance can be determined by comparing the distortion of input and output signals of the receiver module, using a reference host receiver that includes an equalizer. The host receiver can be tested by using a reference receiver module.
    Type: Application
    Filed: April 27, 2009
    Publication date: July 26, 2012
    Applicant: ClariPhy Communications, Inc.
    Inventors: Thomas A. Lindsay, Norman L. Swenson, Paul Voois
  • Patent number: 8229303
    Abstract: A transmitter reduces or minimizes pulse narrowing. In one approach, an optical transmitter is designed to transmit data over an optical fiber at a specified data rate using on-off keying. The transmitter includes a pre-converter electrical channel and a limiting E/O converter. The pre-converter electrical channel produces a pre-converter signal that drives the limiting E/O converter. The pre-converter electrical channel is designed to reduce pulse narrowing in the pre-converter signal. In one implementation, the pre-converter electrical channel includes a pre-emphasis filter that is designed to minimize pulse width shrinkage.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: July 24, 2012
    Assignee: ClariPhy Communications, Inc.
    Inventor: Thomas A. Lindsay
  • Publication number: 20120134665
    Abstract: A transmitter for a communications link is tested by using a (software) simulation of a reference channel and/or a reference receiver to test the transmitter. In one embodiment for optical fiber communications links, a data test pattern is applied to the transmitter under test and the resulting optical output is captured, for example by a sampling oscilloscope. The captured waveform is subsequently processed by the software simulation, in order to simulate propagation of the optical signal through the reference channel and/or reference receiver. A performance metric for the transmitter is calculated based on the processed waveform.
    Type: Application
    Filed: February 6, 2012
    Publication date: May 31, 2012
    Applicant: CLARIPHY COMMUNICATIONS, INC.
    Inventor: Thomas A. Lindsay
  • Patent number: 8139630
    Abstract: A receiver (e.g., for a 10 G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 20, 2012
    Assignee: ClariPhy Communications, Inc.
    Inventors: Oscar E. Agazzi, Diego E. Crivelli, Hugo S. Carrer, Mario R. Hueda, German C. Luna, Carl Grace
  • Patent number: 8111986
    Abstract: A transmitter for a communications link is tested by using a (software) simulation of a reference channel and/or a reference receiver to test the transmitter. In one embodiment for optical fiber communications links, a data test pattern is applied to the transmitter under test and the resulting optical output is captured, for example by a sampling oscilloscope. The captured waveform is subsequently processed by the software simulation, in order to simulate propagation of the optical signal through the reference channel and/or reference receiver. A performance metric for the transmitter is calculated based on the processed waveform.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: February 7, 2012
    Assignee: ClariPhy Communications, Inc.
    Inventor: Thomas A. Lindsay