Abstract: An ice maker with a flexible wall bag supported on a planar cooling surface and having a plurality of water compartments for molding ice cubes. The planar cooling surface is in direct thermal communication with a thermoelectric refrigeration unit for freezing water contained in the ice mold bag. The cooling surface may be the bottom of a cooling tray cooperating with an insulated housing to define a freezing chamber for receiving the ice mold bag. The refrigeration unit is mounted on the bottom wall of the cooling tray. The insulated housing includes an insulated door for access into the freezing chamber and may comprise integral front, rear and side walls. The insulated housing and cooling tray are detachably supported within a cabinet for housing the refrigeration unit. The flexible walls of the ice mold bag are of a material that is easily ruptured for removal of individual ice cubes and may include additional means to facilitate wall rupture.
Abstract: The ice maker includes an ice mold in direct thermal communication with a thermoelectric refrigeration unit for freezing water contained in the mold. The mold and a harvest means for removing ice from the mold are in an insulated housing defining a cold storage bin for receiving harvested ice. The mold and refrigeration unit are mounted on the housing and a bottom wall of the housing comprises an insulated door with a closed position for supporting harvested ice and an open position for discharging harvested ice to a separable drawer for use. The door is mounted for rotation between open and closed positions and is rotated by a drive motor. The refrigeration unit includes a thermoelectric module in direct thermal communication with an external heat exchanger and the module may be sealed within an insulated wall of the housing. A locking mechanism may be provided to lock the dispensing door closed and a heat seal may be provided around the door.