Patents Assigned to Clean Venture 21 Corporation
  • Patent number: 8597971
    Abstract: A method for producing a photovoltaic device that includes spherical photovoltaic elements and a support with a large number of recesses for receiving the elements one by one and to the photovoltaic device. Each of the spherical photovoltaic elements includes a spherical first semiconductor and a second semiconductor layer covering the first semiconductor. A conductive adhesive is applied to the bottoms of the recesses of the support serving as a second conductor layer. The elements are disposed in the bottoms of the recesses with the conductive adhesive applied thereto, to fix the elements to the support and electrically connect their second semiconductor layers to the support. An electrical insulator layer, which has through-holes serving as conductive paths, is bonded to the backside of the support, and a first conductor layer, which interconnects the electrodes of the first semiconductors of the respective elements, is formed thereon.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: December 3, 2013
    Assignee: Clean Venture 21 Corporation
    Inventors: Mikio Murozono, Takeshi Hibino, Noboru Mouri, Young-tae Park, Toshiyuki Nakamura, Yoshiaki Kodani
  • Publication number: 20130164880
    Abstract: A method for producing a photovoltaic device that includes spherical photovoltaic elements and a support with a large number of recesses for receiving the elements one by one and to the photovoltaic device. Each of the spherical photovoltaic elements includes a spherical first semiconductor and a second semiconductor layer covering the first semiconductor. A conductive adhesive is applied to the bottoms of the recesses of the support serving as a second conductor layer. The elements are disposed in the bottoms of the recesses with the conductive adhesive applied thereto, to fix the elements to the support and electrically connect their second semiconductor layers to the support. An electrical insulator layer, which has through-holes serving as conductive paths, is bonded to the backside of the support, and a first conductor layer, which interconnects the electrodes of the first semiconductors of the respective elements, is formed thereon.
    Type: Application
    Filed: November 28, 2012
    Publication date: June 27, 2013
    Applicant: CLEAN VENTURE 21 CORPORATION
    Inventor: CLEAN VENTURE 21 CORPORATION
  • Patent number: 8338690
    Abstract: This invention relates to a method for producing a photovoltaic device that includes spherical photovoltaic elements and a support with a large number of recesses for receiving the elements one by one and to the photovoltaic device. Each of the spherical photovoltaic elements comprises a spherical first semiconductor and a second semiconductor layer covering the surface of the first semiconductor. A conductive adhesive is applied in advance to the bottoms of the recesses of the support serving as a second conductor layer. The elements are disposed in the bottoms of the recesses with the conductive adhesive applied thereto, to fix the elements to the support and electrically connect their second semiconductor layers to the support. An electrical insulator layer, which has through-holes serving as conductive paths, is bonded to the backside of the support, and a first conductor layer, which interconnects the electrodes of the first semiconductors of the respective elements, is formed thereon.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: December 25, 2012
    Assignee: Clean Venture 21 Corporation
    Inventors: Mikio Murozono, Takeshi Hibino, Noboru Mouri, Young-tae Park, Toshiyuki Nakamura, Yoshiaki Kodani
  • Patent number: 7189278
    Abstract: A method for producing semiconductor or metal particles comprises the steps of: storing a semiconductor or metal melt in a crucible having a nozzle; supplying a gas comprising at least one selected from the group consisting of He, Ne, Ar, Kr and Xe into the crucible such that the pressure of the supplied gas in a space over the melt in the crucible is higher than the pressure of a gaseous phase into which the melt is dropped; dropping the melt from the nozzle into the gaseous phase by the pressure of the gas to form liquid particles; and solidifying the liquid particles in the gaseous phase to obtain semiconductor or metal particles. The crucible comprises at least one selected from the group consisting of hexagonal BN, cubic BN, Si3N4, TiB2, ZrB2, zirconia and stabilized zirconia at least near the nozzle.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: March 13, 2007
    Assignee: Clean Venture 21 Corporation
    Inventors: Kenji Kato, Yukio Yamaguchi, Seiichi Isomae, Masaki Miyazaki
  • Patent number: 6706959
    Abstract: A photoelectric conversion element is disposed in each of a plurality of recesses of a support. Light reflected by the inside surface of the recess shines on the photoelectric conversion element. The photoelectric conversion element has an approximately spherical shape and has the following structure. The outer surface of a center-side n-type amorphous silicon (a-Si) layer is covered with a p-type amorphous SiC (a-SiC) layer having a wider optical band gap than a-Si does, whereby a pn junction is formed. A first conductor of the support is connected to the p-type a-SiC layer of the photoelectric conversion element at the bottom or its neighborhood of the recess. A second conductor, which is insulated from the first conductor by an insulator, of the support is connected to the n-type a-Si layer of the photoelectric conversion element.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: March 16, 2004
    Assignee: Clean Venture 21 Corporation
    Inventors: Yoshihiro Hamakawa, Mikio Murozono, Hideyuki Takakura
  • Publication number: 20040016456
    Abstract: A photovoltaic device comprising a plurality of spherical photovoltaic elements, a support and a first conductor layer and its production method are disclosed. Each of the photovoltaic elements comprises a spherical first semiconductor and a second semiconductor layer covering the surface thereof, the second semiconductor layer having an opening through which a part of the first semiconductor is exposed. An electrode is formed on each of the exposed part of the first semiconductor and the outer surface of the second semiconductor layer. The support has a plurality of recesses, each having a connection hole in its bottom, and comprises an electric insulator layer having the connection holes and a second conductor layer which is formed on the electric insulator layer except around the connection holes and which constitutes the inner surface of the recesses. The first conductor layer is disposed on the backside of the support.
    Type: Application
    Filed: July 18, 2003
    Publication date: January 29, 2004
    Applicant: CLEAN VENTURE 21 CORPORATION
    Inventors: Mikio Murozono, Yoshimitsu Hiroshima, Ryoji Okazaki, Takeo Takayanagi, Satoshi Omae
  • Publication number: 20020096206
    Abstract: A photoelectric conversion element is disposed in each of a plurality of recesses of a support. Light reflected by the inside surface of the recess shines on the photoelectric conversion element. The photoelectric conversion element has an approximately spherical shape and has the following structure. The outer surface of a center-side n-type amorphous silicon (a-Si) layer is covered with a p-type amorphous SiC (a-SiC) layer having a wider optical band gap than a-Si does, whereby a pn junction is formed. A first conductor of the support is connected to the p-type a-SiC layer of the photoelectric conversion element at the bottom or its neighborhood of the recess. A second conductor, which is insulated from the first conductor by an insulator, of the support is connected to the n-type a-Si layer of the photoelectric conversion element.
    Type: Application
    Filed: November 21, 2001
    Publication date: July 25, 2002
    Applicant: Clean Venture 21 Corporation
    Inventors: Yoshihiro Hamakawa, Mikio Murozono, Hideyuki Takakura, Yukio Yamaguchi, Jun Yamagata, Hidenori Yasuda