Patents Assigned to Climate Master, Inc.
-
Publication number: 20250109896Abstract: An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.Type: ApplicationFiled: December 13, 2024Publication date: April 3, 2025Applicant: Climate Master, Inc.Inventors: David J. Lingrey, Michael S. Privett, Reem S. Merchant, Michael F. Taras
-
Publication number: 20250085036Abstract: An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.Type: ApplicationFiled: November 22, 2024Publication date: March 13, 2025Applicant: Climate Master, Inc.Inventors: David J. Lingrey, Michael S. Privett, Reem S. Merchant, Michael F. Taras
-
Publication number: 20250085032Abstract: An embodiment of the instant disclosure comprises a reversible heat pump and water heating system for conditioning a space and heating water. The system comprises a refrigerant circuit that includes a compressor, a source heat exchanger, a space heat exchanger, and an expansion device. A 4-way reversing valve alternates between heating and cooling modes of operation. The system includes a heat exchanger for heating water in the water heating loop, and a 3-way valve that either actuates the refrigerant flow through the water heater heat exchanger or bypasses at least a portion of the refrigerant flow around the water heater heat exchanger. The heat pump system is operable in at least five modes—space heating only, space cooling only, water heating only, and either space heating or space cooling combined with water heating.Type: ApplicationFiled: November 18, 2024Publication date: March 13, 2025Applicant: Climate Master, Inc.Inventors: Michael F. Taras, Michael S. Privett, Jeremy R. Smith
-
Patent number: 12181179Abstract: A hybrid heat pump system comprising a heat pump loop integrated with a hydronic loop. The hybrid heat pump system offers multiple modes of operation to provide increased versatility and improved performance. Each of the loops can operate independently. In addition, the loops can operate in conjunction with each other in both heating and cooling modes. Still further, the hydronic loop can provide a reheat function when the heat pump loop is operating in the cooling mode to provide improved dehumidification of the air delivered to the conditioned space. The heat pump loop may include a hot gas bypass functionality for capacity control and/or freeze protection. The hydronic heat exchanger and the space heat exchanger of the heat pump loop may be combined in a compact single slab construction with a slit fin preventing cross-conduction between the heat exchanger sections.Type: GrantFiled: August 31, 2022Date of Patent: December 31, 2024Assignee: Climate Master, Inc.Inventors: Michael F. Taras, Michael S. Privett
-
Patent number: 12181194Abstract: An embodiment of the instant disclosure comprises a reversible heat pump and water heating system for conditioning a space and heating water. The system comprises a refrigerant circuit that includes a compressor, a source heat exchanger, a space heat exchanger, and an expansion device. A 4-way reversing valve alternates between heating and cooling modes of operation. The system includes a heat exchanger for heating water in the water heating loop, and a 3-way valve that either actuates the refrigerant flow through the water heater heat exchanger or bypasses at least a portion of the refrigerant flow around the water heater heat exchanger. The heat pump system is operable in at least five modes—space heating only, space cooling only, water heating only, and either space heating or space cooling combined with water heating.Type: GrantFiled: August 19, 2022Date of Patent: December 31, 2024Assignee: Climate Master, Inc.Inventors: Michael F. Taras, Michael S. Privett, Jeremy R. Smith
-
Patent number: 12181189Abstract: An example heat pump system includes a low-height cabinet configured to be mounted to a ceiling. The low-height cabinet includes a frame and a plurality of panels that define a compressor compartment, a blower compartment, and a plenum compartment. The frame includes one or more dividers that separate the blower compartment, the plenum compartment, and the compressor compartment from each other. The example heat pump system also includes a compressor installed horizontally in the compressor compartment, a heat exchanger installed vertically in the compressor compartment, a blower assembly installed in the blower compartment, and an air coil installed in the blower compartment.Type: GrantFiled: November 10, 2021Date of Patent: December 31, 2024Assignee: Climate Master, Inc.Inventors: David J. Lingrey, Edward A. Wall, Eric H. Albrecht, Michael S. Privett, Juan Antonio Espinosa Gonzalez
-
Patent number: 12173940Abstract: An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.Type: GrantFiled: November 18, 2022Date of Patent: December 24, 2024Assignee: Climate Master, Inc.Inventors: David J. Lingrey, Michael S. Privett, Reem S. Merchant, Michael F. Taras
-
Patent number: 12169085Abstract: An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.Type: GrantFiled: February 3, 2023Date of Patent: December 17, 2024Assignee: Climate Master, Inc.Inventors: David J. Lingrey, Michael S. Privett, Reem S. Merchant, Michael F. Taras
-
Patent number: 11506430Abstract: An HVAC system is disclosed, comprising: (a) a compressor, (b) a source heat exchanger for exchanging heat with a source fluid, (c) a first load heat exchanger operable for heating/cooling air in a space, (d) a second load heat exchanger for heating water, (e) first and second reversing valves, (f) first and second 3-way valves, (f) a bi-directional electronic expansion valve, (g) a first bi-directional valve, and (h) a second bi-directional valve to modulate exchange of heat in the first load heat exchanger when operating as an evaporator and to control flashing of the refrigerant entering the source heat exchanger when operating as an evaporator, (h) a source pump for circulating the source fluid through the first load heat exchanger, (i) a water pump for circulating water through the second load heat exchanger, and (j) a controller to control operation of the foregoing.Type: GrantFiled: June 9, 2020Date of Patent: November 22, 2022Assignee: Climate Master, Inc.Inventors: David J. Lingrey, Michael S. Privett, Reem S. Merchant, Michael F. Taras
-
Patent number: 11448430Abstract: An embodiment of the instant disclosure comprises a reversible heat pump and water heating system for conditioning a space and heating water. The system comprises a refrigerant circuit that includes a compressor, a source heat exchanger, a space heat exchanger, and an expansion device. A 4-way reversing valve alternates between heating and cooling modes of operation. The system includes a heat exchanger for heating water in the water heating loop, and a 3-way valve that either actuates the refrigerant flow through the water heater heat exchanger or bypasses at least a portion of the refrigerant flow around the water heater heat exchanger. The heat pump system is operable in at least five modes—space heating only, space cooling only, water heating only, and either space heating or space cooling combined with water heating.Type: GrantFiled: December 21, 2020Date of Patent: September 20, 2022Assignee: Climate Master, Inc.Inventors: Michael F. Taras, Michael S. Privett, Jeremy R. Smith
-
Patent number: 11435095Abstract: A hybrid heat pump system comprising a heat pump loop integrated with a hydronic loop. The hybrid heat pump system offers multiple modes of operation to provide increased versatility and improved performance. Each of the loops can operate independently. In addition, the loops can operate in conjunction with each other in both heating and cooling modes. Still further, the hydronic loop can provide a reheat function when the heat pump loop is operating in the cooling mode to provide improved dehumidification of the air delivered to the conditioned space. The heat pump loop may include a hot gas bypass functionality for capacity control and/or freeze protection. The hydronic heat exchanger and the space heat exchanger of the heat pump loop may be combined in a compact single slab construction with a slit fin preventing cross-conduction between the heat exchanger sections.Type: GrantFiled: December 14, 2020Date of Patent: September 6, 2022Assignee: Climate Master, Inc.Inventors: Michael F. Taras, Michael S. Privett
-
Patent number: 10935260Abstract: Various embodiments of a heat pump system are disclosed to provide improved and flexible heat pump operation when dehumidification of the conditioned space is required. In one embodiment, a heat pump system includes a heat pump loop comprising a refrigerant circuit that fluidly interconnects (1) a compressor; (2) a source heat exchanger; (3) a source heat exchanger bypass circuit comprising a bypass valve; (4) a space heat exchanger; (5) a reversing valve positioned on the discharge side of the compressor; (6) a reheat circuit comprising a reheat heat exchanger; (7) first and second expansion devices; and (8) first and second expansion device bypass circuits configured to allow refrigerant to bypass the first and second expansion devices, respectively, where the first and second bypass circuits include first and second check valves, respectively; and (9) a 3-way valve configured to selectively direct refrigerant flow to the first expansion device, the reheat circuit, and the second expansion device.Type: GrantFiled: December 7, 2018Date of Patent: March 2, 2021Assignee: Climate Master, Inc.Inventors: Michael F. Taras, Puya Javidmand
-
Patent number: 10871314Abstract: An embodiment of the instant disclosure comprises a reversible heat pump and water heating system for conditioning a space and heating water. The system comprises a refrigerant circuit that includes a compressor, a source heat exchanger, a space heat exchanger, and an expansion device. A 4-way reversing valve alternates between heating and cooling modes of operation. The system includes a heat exchanger for heating water in the water heating loop, and a 3-way valve that either actuates the refrigerant flow through the water heater heat exchanger or bypasses at least a portion of the refrigerant flow around the water heater heat exchanger. The heat pump system is operable in at least five modes—space heating only, space cooling only, water heating only, and either space heating or space cooling combined with water heating.Type: GrantFiled: June 27, 2017Date of Patent: December 22, 2020Assignee: Climate Master, Inc.Inventors: Michael F. Taras, Michael S. Privett, Jeremy R. Smith
-
Patent number: 10866002Abstract: A hybrid heat pump system comprising a heat pump loop integrated with a hydronic loop. The hybrid heat pump system offers multiple modes of operation to provide increased versatility and improved performance. Each of the loops can operate independently. In addition, the loops can operate in conjunction with each other in both heating and cooling modes. Still further, the hydronic loop can provide a reheat function when the heat pump loop is operating in the cooling mode to provide improved dehumidification of the air delivered to the conditioned space. The heat pump loop may include a hot gas bypass functionality for capacity control and/or freeze protection. The hydronic heat exchanger and the space heat exchanger of the heat pump loop may be combined in a compact single slab construction with a slit fin preventing cross-conduction between the heat exchanger sections.Type: GrantFiled: October 4, 2017Date of Patent: December 15, 2020Assignee: Climate Master, Inc.Inventors: Michael F. Taras, Michael S. Privett
-
Patent number: 10345004Abstract: An integrated heat pump and water heating circuit for space heating and cooling and heating domestic water. The circuit includes a first heat exchanger for the domestic water, a second heat exchanger for the source, a third exchanger for the space, and a variable capacity compressor. The circuit has four modes of operation. In the first mode, the space is cooled. In the second mode, the space is heated. In the third mode, the circuit heats the water supply. In a fourth mode, the water supply is heated and the space is cooled simultaneously. The speed of the compressor is adjusted to maintain a pressure differential at or above a predetermined set point.Type: GrantFiled: September 1, 2015Date of Patent: July 9, 2019Assignee: Climate Master, Inc.Inventors: Shawn A. Hern, Dennis L. Harris
-
Publication number: 20140123689Abstract: An integrated heat pump and water heating circuit for space heating and cooling and heating domestic water. The circuit includes a first heat exchanger for the domestic water, a second heat exchanger for the source (heat source/sink) with a first dedicated expansion valve, and a third exchanger for the space with a second dedicated expansion valve. The circuit has four modes of operation. In the first mode, the space is cooled and heat is rejected to the source. In the second mode, the space is heated while heat is absorbed from the source. In the third mode, the circuit absorbs heat from the source and heats the water supply. In a fourth mode, the water supply is heated and the space is cooled simultaneously. In each mode, one heat exchanger is inactive, and the charge from the inactive heat exchanger is reclaimed to the suction side of the compressor.Type: ApplicationFiled: March 21, 2013Publication date: May 8, 2014Applicant: CLIMATE MASTER, INC.Inventors: Daniel L. Ellis, Shawn A. Hern
-
Patent number: 7913501Abstract: A water-cooled air conditioning system using a regenerative condenser water circuit to reheat the supply air during a dehumidification mode. The air conditioning system may be any type of water-cooled system, including a water source heat pump or water-cooled air conditioner. The reheat circuit circulates water leaving the condenser through the reheat heat exchanger and then returns the water to the condenser inlet. Thus, the reheat circuit ensures that water leaving the condenser is warm enough to provide sufficient reheating for the supply air, regardless of the water source temperature. In addition, a modulation assembly controls the amount of water flowing through the reheat circuit, and thereby its temperature, so that the temperature of the reheated supply air can be maintained within a narrow range.Type: GrantFiled: September 16, 2008Date of Patent: March 29, 2011Assignee: Climate Master, Inc.Inventors: Daniel L. Ellis, Laxmikant N. Nerurkar
-
Publication number: 20090229286Abstract: A water-cooled air conditioning system using a regenerative condenser water circuit to reheat the supply air during a dehumidification mode. The air conditioning system may be any type of water-cooled system, including a water source heat pump or water-cooled air conditioner. The reheat circuit circulates water leaving the condenser through the reheat heat exchanger and then returns the water to the condenser inlet. Thus, the reheat circuit ensures that water leaving the condenser is warm enough to provide sufficient reheating for the supply air, regardless of the water source temperature. In addition, a modulation assembly controls the amount of water flowing through the reheat circuit, and thereby its temperature, so that the temperature of the reheated supply air can be maintained within a narrow range.Type: ApplicationFiled: September 16, 2008Publication date: September 17, 2009Applicant: CLIMATE MASTER, INC.Inventors: Daniel L. Ellis, Laxmikant N. Nerurkar
-
Patent number: 5533355Abstract: An improved ground source heat pump system wherein the subterranean piping installation comprises modular heat exchange units. Each modular heat exchange unit comprises a plurality of parallel secondary conduits. The secondary conduits are connected between primary conduits by means of multi-tiered inlet and outlet manifolds. Each manifold comprises a three-way "T" or end member and at least one and probably several four-way connecting members. Each of the end members has one inlet and at least one and preferably two outlets. Each connecting member has one inlet and at least two and preferably three outlets. The inlets and outlets of the end members and connecting members are configured to interconnect interchangeably in male-female fashion. Elbow units are used to connect the ends of the secondary conduits with the inlets and outlet of the end members and connecting members. Thus, only two types of components are necessary to build heat exchange units having any number of secondary conduits.Type: GrantFiled: November 7, 1994Date of Patent: July 9, 1996Assignee: Climate Master, Inc.Inventor: John P. Rawlings
-
Patent number: 5477914Abstract: An improved ground source heat pump system wherein the subterranean piping installation comprises modular heat exchange units. Each modular heat exchange unit comprises a plurality of parallel secondary or branch conduits. The use of multiple parallel secondary conduits significantly increases the heat exchange capacity of the system. Because of the increased efficiency of such a system, less piping is required, which in turn reduces the cost of labor and materials to install such a system and the area of land mass required to contain it. Moreover, because the heat exchange units are modular, they can be prefabricated at a remote site and then conveniently transported to construction site and installed much more quickly than the extended lengths of conventional piping.Type: GrantFiled: September 7, 1994Date of Patent: December 26, 1995Assignee: Climate Master, Inc.Inventor: John P. Rawlings