Abstract: Disclosed is a method for fast and cost-efficient preparation of ikaite crystals. The method comprises contacting an alkaline aqueous solution, which comprises carbonate and bicarbonate ions, with a water solution, which comprises Ca2+, at a temperature not exceeding 15° C., wherein contact between the alkaline aqueous solution and the water solution takes place at a permeable or porous surface, through which either solution is fed to the other at a flow rate facilitating formation of ikaite crystals. Also disclosed is system for carrying out the ikaite preparation process. The process and system provides a cost efficient and effective means for capture and storage of carbon dioxide.
Abstract: Disclosed is a method for fast and cost-efficient preparation of ikaite crystals. The method comprises contacting an alkaline aqueous solution, which comprises carbonate and bicarbonate ions, with a water solution, which comprises Ca2+, at a temperature not exceeding 15° C., wherein contact between the alkaline aqueous solution and the water solution takes place at a permeable or porous surface, through which either solution is fed to the other at a flow rate facilitating formation of ikaite crystals. Also disclosed is system for carrying out the ikaite preparation process. The process and system provides a cost efficient and effective means for capture and storage of carbon dioxide.