Patents Assigned to Cnoga Medical Ltd.
  • Patent number: 11819317
    Abstract: An apparatus generates a pulse (or other hemodynamic) signal from an ECG signal, and displays a waveform of that signal. An ECG unit comprises electrode(s) for receiving an ECG signal waveform from live tissue and for generating a digital ECG signal; a memory storage; hardware processor(s) configured to constantly apply an integral function to the digital ECG signal and display a waveform of the integral function during a time period. The waveform of the integral function has a shape of a pulse signal waveform of the subject during the time period. The integral function comprises PWF(t)T=A?tt+TF(ECG(u))du ECG(u) represents an ECG over a specific time period using a specific time resolution. T is determined from the ECG(u) time resolution and pulse frequency, T satisfies the Nyquist sampling theory, t, u are time variables and A is a positive constant. The memory stores the integral function waveform. A weight function PWF(t)T=A?tt+TF(ECG(u))·W(u?t)du may be included.
    Type: Grant
    Filed: December 2, 2018
    Date of Patent: November 21, 2023
    Assignee: CNOGA MEDICAL LTD.
    Inventors: Yosef Segman, Yehonatan Segman
  • Patent number: 10789725
    Abstract: Apparatus for determining height, width, weight or body mass index (BMI) of a subject or distance along an object. For BMI, the apparatus includes a digital camera; an application; a processing unit for storing the vertical and horizontal dimensions of known substantially rectangular reference objects. A user interface prompts and receives the type of reference object held by the user or its dimensions. For each of the vertical and horizontal dimensions, a magnitude in pixels and in distance of the reference object to form a ratio and a pixel magnitude of the vertical and horizontal dimensions of the subject in the image(s), is used to derive an estimated height and width of the subject from the pixel magnitude of the vertical and horizontal dimensions of the subject in the image(s). In some embodiments, the number of pixels occupied by the subject in the image(s) is used with a look-up table.
    Type: Grant
    Filed: April 22, 2018
    Date of Patent: September 29, 2020
    Assignee: CNOGA MEDICAL LTD.
    Inventor: Yosef Segman
  • Patent number: 10736550
    Abstract: An apparatus obtaining a pH level of a tissue comprises an array of at least three optical sensors configured to absorb light shined on the tissue and thereby obtain at least three electronic digital signals, wherein the first electronic signal A1(X,t) represents the light absorbed by the tissue in location X=(X,Y,Z) at time t and at wavelength L1, and similarly the second and third electronic signal A2(X,t) and A3(X,t), and a finite absorption range of the three wavelength L1, L2 and L3 is such that 0<=A3(X,t)<=A2(X,t)<A1(X,t); and an electronic processing unit receives the signals and applies an ordered monotone function, F1, to the tissue, to spatial temporal information of each wavelength, F1 used by a transfer function for presentation as a LookUp Table connecting actual values computed by F1 and an actual pH of the tissue in location X at time t.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: August 11, 2020
    Assignee: Cnoga Medical Ltd.
    Inventor: Yosef Segman
  • Patent number: 10687739
    Abstract: An apparatus for monitoring blood glucose comprising an invasive component for invasively measuring blood glucose and a non-invasive component, including color image sensor(s) to generate images from absorption of light that traversed the tissue, to receive a body part and generate a non-invasive blood glucose reading. Processor(s) convert the images into a vector V associated with a particular at least one invasive blood glucose measurement gk1, form a regular learning matrix, ?, implement a noninvasive isolation mechanism of the tissue glucose level by unique association of the vector Vk with an invasive blood glucose level, determine a neural network from the learning set ? by pairing vectors into a branch and forming multiple branches into loops, wherein two vectors are paired if they have a pre-defined similarity in the blood glucose levels that each are associated with; and calibrate the neural network by having it pass at least one test.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: June 23, 2020
    Assignee: Cnoga Medical Ltd.
    Inventor: Yosef Segman
  • Patent number: 10674921
    Abstract: Device for measuring blood pressure hemodynamically in blood vessels at one or more body locations comprising light source; at least three sensors including an array of at least three optical sensors, for receiving light and for obtaining a signal over time comprising temporal per pixel information for at least two wavelengths of light, and corresponding to a flow of blood within a blood vessel over time; a processing unit configured to receive the signal and generate a continuous dynamic blood pressure reading by using the temporal per pixel information for the at least two wavelengths of light to produce heart rate signals from the blood flow, and by applying a modified Windkessel model on the signal such that the blood pressure also depends on a spatial temporal pressure resistance function over time that depends on a body location of the blood flow over time, the pressure resistance function representing elastance/stiffness.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: June 9, 2020
    Assignee: CNOGA MEDICAL LTD.
    Inventor: Yosef Segman
  • Patent number: 10551298
    Abstract: Apparatus for testing bioparameter monitoring devices includes artificial organs that comprise an elongated sponge wrapped in electrically conductive hydrogel skin, inlet and outlet tubes having a reddish liquid flowing therein and a pulsatile pump configured to generate a pulsatile flow of the liquid. A valve has a variable opening. For each artificial organ: the inlet tube extends out of the sponge and connects eventually to the pulsatile pump, the inlet tube penetrating the elongated sponge so as to extend to a tip of the elongated sponge at a distal end of the inlet tube, and the outlet tube extends out of the elongated sponge and connects eventually to the pulsatile pump at a proximal end of the outlet tube, the outlet tube penetrating the sponge so as to extend to a tip of the elongated sponge at a distal end of the outlet tube.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: February 4, 2020
    Assignee: CNOGA MEDICAL LTD.
    Inventor: Yosef Segman
  • Patent number: 10441203
    Abstract: A space-saving structural component for a device, the device configured to non-invasively determine a tissue bioparameter of a mammalian subject, the component comprising a wall surface including a grooved recess and at least one shoulder; and a substantially flat cover, the cover configured to cover the wall surface by moving from an open position far enough away from the wall surface to allow insertion of an appendage of the subject into a chamber defined by the grooved recess and the cover, to a closed position, the cover comprising a flexible material that, in the closed position, elastically deforms away from the wall surface when the appendage is present in the grooved recess and restores to a substantially flat state when the appendage is absent from the grooved recess, wherein in the closed position, when the appendage is absent from the recess, the cover is adjacent the at least one shoulder.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 15, 2019
    Assignee: CNOGA MEDICAL LTD.
    Inventor: Yosef Segman
  • Patent number: 9855009
    Abstract: An apparatus for working in conjunction with a digital sensor, CPU and display of a host device in order to measure blood characteristics that includes a housing configured for association with the host device so as to define between them a chamber into which at least a portion of an appendage of a living being is placed such that a tip of the appendage is deployed adjacent to the digital sensor so as to cover the digital sensor. The chamber substantially encloses the digital sensor. Light from a light source is directed toward the appendage tip, wherein at least some light from the light source is reflected by tissue of the appendage, is received by the sensor and data thereby generated is processed by the CUP to determine the blood characteristics.
    Type: Grant
    Filed: July 15, 2012
    Date of Patent: January 2, 2018
    Assignee: CNOGA MEDICAL LTD.
    Inventor: Yosef Segman
  • Patent number: 9844345
    Abstract: In a combination invasive and non-invasive bioparameter monitoring device an invasive component measures the bioparameter and transmits the reading to the non-invasive component. The non-invasive component generates a bioparametric reading upon insertion by the patient of a body part. A digital processor processes a series over time of digital color images of the body part and represents the digital images as a signal over time that is converted to a learning vector using mathematical functions. A learning matrix is created. A coefficient of learning vector is deduced. From a new vector from non-invasive measurements, a new matrix of same size and structure is created. Using the coefficient of learning vector, a recognition matrix may be tested to measure the bioparameter non-invasively. The learning matrix may be expanded and kept regular. After a device is calibrated to the individual patient, universal calibration can be generated from sending data over the Internet.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 19, 2017
    Assignee: CNOGA MEDICAL LTD.
    Inventor: Yosef Segman
  • Publication number: 20140018647
    Abstract: An apparatus for working in conjunction with a digital sensor, CPU and display of a host device in order to measure blood characteristics that includes a housing configured for association with the host device so as to define between them a chamber into which at least a portion of an appendage of a living being is placed such that a tip of the appendage is deployed adjacent to the digital sensor so as to cover the digital sensor. The chamber substantially encloses the digital sensor. Light from a light source is directed toward the appendage tip, wherein at least some light from the light source is reflected by tissue of the appendage, is received by the sensor and data thereby generated is processed by the CUP to determine the blood characteristics.
    Type: Application
    Filed: July 15, 2012
    Publication date: January 16, 2014
    Applicant: CNOGA MEDICAL LTD.
    Inventor: Yosef Segman
  • Patent number: 8489165
    Abstract: The present invention relates to a device for measuring blood and physiological characteristics by passing light through human tissue that is configured for deployment on a human finger. The device includes a lower finger-trough configured in the main housing of the device; a hingedly attached closeable lid that has an upper finger-trough configured for deployment of at least one finger stabilizing element, the lid being latchable in a closed position; a finger stabilizing element made of a material having flexibly soft malleable characteristics so as to sealingly engage the top of the finger; a light source that is deployed in the sloped end wall of the lower finger-trough adjacent to the lower portion of the finger tip; and an end cap the is deployable on the open end of the device when the lid is in the closed position, which enables calibration of the device with a minimum of light wave “noise” from ambient light.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: July 16, 2013
    Assignee: Cnoga Medical Ltd.
    Inventor: Yosef Segman
  • Publication number: 20100105996
    Abstract: The present invention relates to a device for measuring blood and physiological characteristics by passing light through human tissue that is configured for deployment on a human finger. The device includes a lower finger-trough configured in the main housing of the device; a hingedly attached closeable lid that has an upper finger-trough configured for deployment of at least one finger stabilizing element, the lid being latchable in a closed position; a finger stabilizing element made of a material having flexibly soft malleable characteristics so as to sealingly engage the top of the finger; a light source that is deployed in the sloped end wall of the lower finger-trough adjacent to the lower portion of the finger tip; and an end cap the is deployable on the open end of the device when the lid is in the closed position, which enables calibration of the device with a minimum of light wave “noise” from ambient light.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 29, 2010
    Applicant: CNOGA MEDICAL LTD.
    Inventor: Yosef SEGMAN
  • Patent number: 7535498
    Abstract: Electronic viewing devices including image sensors, image processing units, image displays devices, and optional viewfinders are disclosed. Optionally, the image processing unit is configured to produce a distorted image. In some embodiments, the production of the distorted image include using at least one distorting algorithm including coordinate transformations, time transformations, a color transformations a value transformation, and any combination thereof. Optionally, the distorted image is superimposed on a preserved image to form a hybrid image. Exemplary image sensors include but are not limited to visible light sensors, magnetic sensor, heat sensor, infra red sensor, echo location sensor, radio location sensor, remote location reporting sensor, proximity sensor, motion sensor, or a combination thereof.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: May 19, 2009
    Assignee: Cnoga Medical Ltd.
    Inventor: Yosef Segman
  • Patent number: D687150
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: July 30, 2013
    Assignee: Cnoga Medical Ltd.
    Inventor: Yosef Segman