Abstract: An apparatus includes at least one housing configured to be implanted within a body of a recipient, at least one acoustic transducer positioned on or within the at least one housing, at least one motion sensor positioned on or within the at least one housing, gain circuitry configured to apply a gain to transducer output signals from the at least one acoustic transducer, at least one storage device, and at least one processor operatively coupled to the at least one acoustic transducer, the at least one motion sensor, the gain circuitry, and the at least one storage device. The at least one processor is configured to adjust the gain circuitry in response to a reference acoustic sensitivity function, a reference vibration response function, the transducer output signals, and sensor output signals from the at least one motion sensor.
Abstract: Presented herein are techniques that use acoustic scene (environmental) analysis to determine the sound class of sound signals received at a hearing prosthesis and, accordingly, assess the estimated listening difficulty that the acoustic environment presents to a recipient of the hearing prosthesis. This difficulty of the recipient's listening situation can be used to adjust, adapt, or otherwise set the resolution of the electrical stimulation signals delivered to the recipient to evoke perception of the sound signals. In other words, the resolution of the electrical stimulation signals is dynamically adapted based on the present acoustic environment of the hearing prosthesis.
Abstract: Presented herein are techniques for enhancing a hearing prosthesis recipient's perception of multiple frequencies present in received sound signals. The hearing prosthesis is configured to extract a plurality of frequencies from the received sound signals and to use the plurality of frequencies to modulate the amplitudes of different stimulation pulse sequences that are to be delivered to the recipient via different stimulation channels. The hearing prosthesis may also adapt a stimulation resolution of the stimulation pulse sequences when delivering the modulated stimulation pulses sequences to the recipient.
Type:
Grant
Filed:
October 25, 2019
Date of Patent:
November 22, 2022
Assignee:
Cochlear Limited
Inventors:
Naomi Croghan, Harish Krishnamoorthi, Zachary Mark Smith
Abstract: Systems and methods are provided for customizing an auditory prosthesis or other medical device. Customizing the auditory prosthesis includes obtaining and evaluating system data. The system data includes data from multiple sensors, including one or more sensors of an auditory prosthesis and one or more sensors of a recipient computing device. Based on the evaluation of the system data, a target behavior is determined, such as operating the auditory prosthesis in a particular sonic environment or with particular auditory prosthesis settings.
Type:
Grant
Filed:
October 14, 2019
Date of Patent:
November 15, 2022
Assignee:
Cochlear Limited
Inventors:
Jan Patrick Frieding, Carl Uvesten, Fredrik Breitholtz, Nicholas Feeney
Abstract: An apparatus is provided that includes an elongate body, a first connector, and a second connector. The first connector has a first axis and is configured to be repeatedly attached to and detached from a percutaneous implant of a bone conduction acoustic prosthesis system. The second connector has a second axis and is configured to be repeatedly attached to and detached from a component of the acoustic prosthesis system, the component external to the recipient. The first axis and the second axis are offset from one another along a first direction.
Type:
Grant
Filed:
May 1, 2019
Date of Patent:
November 8, 2022
Assignee:
Cochlear Limited
Inventors:
Emelie Lager, Madeleine Gustavsson, Henrik Fyrlund
Abstract: A BTE prosthetic device for use in a medical system or prosthesis comprises a connector configured to mechanically attach an auxiliary device of the system to the BTE prosthetic device. The connector is electrically connected to a transceiver of the BTE prosthetic device. The connector operates as an electromagnetic antenna for transmitting and/or receiving signals between the BTE prosthetic and other components of the medical system.
Type:
Grant
Filed:
December 30, 2021
Date of Patent:
November 8, 2022
Assignee:
Cochlear Limited
Inventors:
Werner Meskens, Tadeusz Jurkiewicz, Steve Winnal, Limin Zhong
Abstract: Presented herein are techniques for monitoring the physical state of a stimulating assembly to, for example, detect the occurrence of an adverse event. More specifically, an elongate stimulating assembly comprising a plurality of longitudinally spaced contacts is at least partially implanted into a recipient. Electrical measurements are performed at one or more of the plurality of contacts and the electrical measurements are evaluated relative to one another to determine the physical state of the stimulating assembly.
Type:
Grant
Filed:
December 23, 2019
Date of Patent:
November 1, 2022
Assignee:
Cochlear Limited
Inventors:
Benjamin Peter Johnston, Paul Michael Carter, Stuart John Kay, Andrea Lam, Shaun Ashwin Kumar, Joerg Pesch
Abstract: Disclosed herein are electrode assemblies configured for use with a medical device, such as an implantable medical device. In one aspect, the disclosed electrode assembly includes at least a first electrode and a second electrode, each of which is configured to deliver electrical stimuli to a body part of a recipient. The electrode assembly also includes a first wire that is attached at one end to the first electrode and comprises a conductor that has a first diameter, and a second wire that is attached to the second electrode and comprises a conductor that has a second diameter, with the first diameter being greater than the second diameter. Additionally, each of the first wire and the second wire pass through a proximal end of the assembly is configured to connect the one of the electrodes to a stimulation unit of a medical device.
Abstract: Presented herein are techniques for training a hearing prosthesis to classify/categorize received sound signals as either including a recipient's own voice (i.e., the voice or speech of the recipient of the hearing prosthesis) or external voice (i.e., the voice or speech of one or more persons other than the recipient). The techniques presented herein use the captured voice (speech) of the recipient to train the hearing prosthesis to perform the classification of the sound signals as including the recipient's own voice or external voice.
Abstract: A compensation system for an implantable actuator is disclosed where the implantable actuator includes a sealed housing containing a driving arrangement for the actuator. The compensation system includes an external pressure sensor for measuring an external pressure outside of the sealed housing and a compensation module for determining a compensation factor for the implantable actuator based on the external pressure. In one embodiment, the compensation is directed to a direct acoustic cochlear stimulation (DACS) implantable actuator.
Abstract: Disclosed examples generally include methods and apparatuses related to microphone units, such as may be found in implantable medical devices (e.g., cochlear implants). Microphone units generally include a microphone element connected to a chamber having a concave floor with the chamber covered by a membrane. Microphone units can be configured to produce an output based on pressure waves (e.g., sound waves) that reach the membrane. In an example, a microphone unit has a pressurized gas within the chamber below the membrane such that, while in a static state, the membrane deflects away from the chamber floor.
Type:
Grant
Filed:
August 4, 2017
Date of Patent:
October 11, 2022
Assignee:
Cochlear Limited
Inventors:
Joris Walraevens, Patrik Kennes, Vincente Osorio, Stijn Eeckhoudt, Koen Erik Van den Heuvel
Abstract: A method for operating an external component of a cochlear implant hearing system. The external component includes a speech processor module operable in a stand-alone mode of operation and a body-worn mode of operation, and a protective case. The method includes operating the speech processor module in the stand-alone mode, determining when the speech processor module is mounted in the case, and operating the speech processor module in the body-worn mode in response to determining that the speech processor module is mounted in the case.
Type:
Grant
Filed:
January 18, 2018
Date of Patent:
September 13, 2022
Assignee:
Cochlear Limited
Inventors:
Derek Ian Darley, Michael Goorevich, Peter Scott Single
Abstract: Wires and coils within an electrode assembly electromagnetically interact and cause mechanical motion of the assembly. This mechanical motion can be used to supplement or replace the electrical stimulation provided by a standard cochlear implant and provides targeted acoustic stimulation to the cochlea.
Type:
Grant
Filed:
January 17, 2020
Date of Patent:
September 13, 2022
Assignee:
Cochlear Limited
Inventors:
Jan Vermeiren, Kristof Buytaert, Rishubh Verma
Abstract: A method, including obtaining information indicative of a phenomenon sensed at a read electrode of a cochlear implant electrode array relative to a reference and/or at a read electrode remote from the electrode array relative to a reference, where one of the electrodes of the cochlear implant electrode array was energized executing a first analysis of the information to identify one or more first meanings from among a first group of meanings of the sensed phenomenon, conditioning the obtained information based on the identified one or more first meanings, and executing a second analysis of the conditioned information to identify one or more second meanings from among a second group of meanings of the sensed phenomenon.
Type:
Grant
Filed:
September 18, 2017
Date of Patent:
September 13, 2022
Assignee:
Cochlear Limited
Inventors:
Ángel Ramos de Miguel, Sr., Ángel Manuel Ramos Macías, D. Juan Carlos Falcon Gonzalez, Riaan Rottier, Christopher Bennett
Abstract: A bone conduction device includes split high-frequency and low-frequency actuators. The frequency response of the low-frequency actuator can be restricted to the lower range of hearing frequencies to improve performance. The high-frequency actuator can be implanted under tissue close to the cochlea to improve transmission efficiency, since high-frequency vibrations suffer greater attenuation.
Abstract: A medical implant, such as an implantable component (22) of a tissue-stimulating prosthesis. One example of such a prosthesis being a cochlear implant. The component (22) is adapted to be implanted at or adjacent a tissue surface within the recipient, such as a bone surface. The component (22) has a housing and at least one flange (42) extending outwardly therefrom. The flange (42) can be secured to the tissue surface via a tissue fixation device, such as a bone screw (43).
Abstract: Embodiments presented herein are generally directed to techniques for the transfer of isochronous stimulation data over a standardized isochronous audio or data link between components of an implantable medical device system. More specifically, as described further below, a first component is configured to generate dynamic stimulation data based on one or more received sound signals. The first component is configured to obtain static configuration data and to encode the dynamic stimulation data and the static configuration data into a series of isochronous wireless packets. The first component is configured to transmit the series of wireless packets over an isochronous wireless channel to a second component of the implantable medical device system.
Abstract: An apparatus and method for implanting and securing an implanted medical device in a recipient. The implantable medical device of the generally includes an electrode assembly that comprises an elongate carrier member having at least one stimulating electrode positioned thereon. The carrier member further has a fixation structure positioned thereon configured to interact with a portion of the rigid structure to longitudinally secure the carrier member in the recipient.
Abstract: An apparatus includes a stimulation assembly having an elongate body and a plurality of stimulation elements longitudinally spaced from one another along a portion of the elongate body. The stimulation assembly includes a first set of the stimulation elements and a second set of the stimulation elements. The apparatus further includes a tube over the second set of the stimulation elements. The tube is configured to be removed from the stimulation assembly.
Type:
Grant
Filed:
May 20, 2019
Date of Patent:
August 30, 2022
Assignee:
Cochlear Limited
Inventors:
Daniel Smyth, Nicholas Pawsey, Peter Gibson
Abstract: A medical device prosthesis, including a housing and a piezoelectric transducer including a piezoelectric component, wherein the piezoelectric transducer is supported in the housing via at least one spring. In some embodiments, the medical device prosthesis is a bone conduction device, such as a transcutaneous passive or active bone conduction device.
Type:
Grant
Filed:
October 28, 2016
Date of Patent:
August 30, 2022
Assignee:
Cochlear Limited
Inventors:
Tommy Bergs, Marcus Vardfjäll, Kristian Gunnar Asnes