Abstract: Embodiments presented herein are generally directed to implantable medical devices that are configured for both near-field communication and far-field communication via the same implantable loop antenna. More specifically, the implantable medical devices include implant electronics that are independently coupled to the loop antenna via a transformer and an isolation coupler. The transformer is configured to provide near-field signals received at the loop antenna to the implant electronics, while the isolation coupler is configured to provide far-field signals received at the loop antenna to the implant electronics.
Abstract: A feedthrough for a cochlear implant or other medical device can include contacts disposed on an outer perimeter thereof. By disposing the contacts on the perimeter, the number of contacts on the feedthrough can be increased, the size of the feedthrough reduced, or both.
Abstract: Provided herein are various connectors that allow for translating the axial movement of an implantable hearing transducer from a first direction to a second direction. In various arrangements, these connectors form a spanning connector that extend across a portion of a tympanic cavity of a patient. One end of the connector can be affixed to the tympanic cavity, and a second end may engage an auditory component. In such an arrangement, a vibratory actuator may engage the connector between the first and second ends. Such an arrangement can provide improved alignment of actuator movement with a direction of movement of an auditory component.
Abstract: A method, including capturing first sound with a hearing prosthesis, classifying the first sound using the hearing prosthesis according to a first feature regime, capturing second sound with the hearing prosthesis, and classifying the second sound using the hearing prosthesis according to a second feature regime different from the first feature regime.
Type:
Grant
Filed:
June 9, 2016
Date of Patent:
April 21, 2020
Assignee:
Cochlear Limited
Inventors:
Alex Von Brasch, Stephen Fung, Kieran Reed
Abstract: Examples relate to systems and methods for providing settings adjustments to auditory prostheses. One or more settings adjustments can be provided to an auditory device in response to a request for the adjustments or a notification that the recipient is experiencing poor quality. The technologies disclosed herein can dynamically adapt based upon information received from a set of auditory prostheses. The information received from the set of auditory prostheses can be used to update the settings adjustments.
Abstract: Systems and methods for detecting when a device is placed into an operational position are disclosed. Upon determination that the device is in the operational position, one or more processes can be executed. Execution or initialization of the processes upon detection of the operational position provides for the determination of optimal settings than would otherwise be determined if the processes automatically executed before detection of the operational position. Further aspects of the present disclosure relate to determining when the device is no longer in an operational position upon which time the execution of the processes are terminated. The settings in place upon termination can be saved and reapplied the next time the device is in the operational position.
Type:
Grant
Filed:
May 18, 2016
Date of Patent:
April 7, 2020
Assignee:
Cochlear Limited
Inventors:
Martin Evert Gustaf Hillbratt, Kristian Gunnar Asnes
Abstract: A method, including the action of operating a sense prosthesis, such as a retinal implant, according to a first operating regime while the recipient has a first fatigue level, and operating the sense prosthesis according to a second operating regime while the recipient has a second fatigue level that is greater than the first fatigue level.
Abstract: A medical implant, such as an implantable component (22) of a tissue-stimulating prosthesis. One example of such a prosthesis being a cochlear implant. The component (22) is adapted to be implanted at or adjacent a tissue surface within the recipient, such as a bone surface. The component (22) has a housing and at least one flange (42) extending outwardly therefrom. The flange (42) can be secured to the tissue surface via a tissue fixation device, such as a bone screw (43).
Abstract: A hearing prosthesis, including an actuator assembly, and a chassis supporting the actuator assembly, wherein the actuator assembly is configured to vibrate when an electrical current is applied to the actuator assembly such that a first apparatus of the actuator assembly vibrates relative to a second apparatus of the actuator assembly, the chassis is connected to the second apparatus, and the actuator assembly retains data related to an operational performance of the actuator assembly.
Abstract: A compensation system for an implantable actuator is disclosed where the implantable actuator includes a sealed housing containing a driving arrangement for the actuator. The compensation system includes an external pressure sensor for measuring an external pressure outside of the sealed housing and a compensation module for determining a compensation factor for the implantable actuator based on the external pressure. In one embodiment, the compensation is directed to a direct acoustic cochlear stimulation (DACS) implantable actuator.
Abstract: According to one aspect of the present invention, there is provided an implantable medical device comprising: an implantable component, comprising an implantable memory module, configured to receive and store recipient-specific operating parameters in the implantable memory module, an external component, comprising an external memory module, configured to communicate with the implantable component to receive the recipient-specific operating parameters, and to configure the external component using the recipient-specific operating parameters, wherein the implantable medical device is configured to transfer the recipient-specific operating parameters upon operationally coupling the implantable component with the external component.
Abstract: A button sound processor, including an RF coil, such as an inductance coil, and a sound processing apparatus and a magnet, which can be a permanent magnet, wherein the button sound processor has a skin interface side configured to interface with skin of a recipient, and the button sound processor is configured such that the magnet is installable into the button sound processor from the skin interface side.
Abstract: A method, including subjecting a subcutaneous medical device containing a magnet to a magnetic field, thereby imparting a torque onto the magnet, and resisting the imparted torque via an external device that has a skin facing component extending in a direction away from a curvature of the body of the recipient at locations proximate a portion directly contacting skin directly above the implanted magnet.
Type:
Grant
Filed:
April 28, 2017
Date of Patent:
March 3, 2020
Assignee:
Cochlear Limited
Inventors:
Charles Roger Aaron Leigh, Anthony Powell, Peter Raymond Sibary
Abstract: A portable body carried device, including a mobile computer having a display, wherein the portable body carried device is configured to receive data from a hearing prosthesis, such as a cochlear implant, and present an interface display on the display from among a plurality of different interface displays based on the received data.
Type:
Grant
Filed:
May 24, 2016
Date of Patent:
February 25, 2020
Assignee:
Cochlear Limited
Inventors:
Ivana Popovac, Victor Manuel Rodrigues, Rishubh Verma, Kenneth Oplinger, Jan Patrick Frieding, Adam Schindhelm
Abstract: The present invention is related to an implantable medical device. The medical device comprises an implantable component having a receiver unit; an external charging module having a power transmitter unit; and a data module having a data transmitter unit. The units are configured to establish a transcutaneous communication link over which data and power is transmitted on a single frequency channel via a time interleaving scheme comprising successive frames each divided into at least two time slots, and wherein one or more of the time slots in each frame is allocated to the data transmitter unit, and wherein one or more of the time slots in each frame is allocated to the power transmitter unit, and wherein data and power are transmitted by the transmitter units during their allotted time slots.
Abstract: A method, systems, and devices are disclosed. An example method includes determining whether an external unit of an implanted medical device is coupled to an implanted unit of the implanted medical device. In response to determining that the external unit is coupled to the implanted unit, the example method includes causing the external unit to operate in a first operating mode. In response to determining that the external unit is not coupled to the implanted unit, the example method includes causing the external unit to operate in a second operating mode.
Abstract: A bone conduction device includes split high-frequency and low-frequency actuators. The frequency response of the low-frequency actuator can be restricted to the lower range of hearing frequencies to improve performance. The high-frequency actuator can be implanted under tissue close to the cochlea to improve transmission efficiency, since high-frequency vibrations suffer greater attenuation.
Abstract: A method performed by an electronic controller includes determining a charge level of a power supply configured to provide power to a medical device, and estimating, based on the charge level of the power supply, a first power supply life for operating the medical device according to a first mode. Further, the method includes estimating, based on the charge level of the power supply, a second power supply life for operating the medical device according to a second mode. As recited, operating the medical device according to the first mode has a different power use or consumption characteristic from operating the medical device according to the second mode. The method also includes generating a notification indicative of the first power supply life and the second power supply life.
Type:
Grant
Filed:
January 16, 2018
Date of Patent:
February 4, 2020
Assignee:
Cochlear Limited
Inventors:
Michael Goorevich, Kenneth Oplinger, Zachary Smith
Abstract: Presented herein are techniques for monitoring the physical state of a stimulating assembly to, for example, detect the occurrence of an adverse event. More specifically, an elongate stimulating assembly comprising a plurality of longitudinally spaced contacts is at least partially implanted into a recipient. Electrical measurements are performed at one or more of the plurality of contacts and the electrical measurements are evaluated relative to one another to determine the physical state of the stimulating assembly.
Type:
Grant
Filed:
August 17, 2017
Date of Patent:
February 4, 2020
Assignee:
Cochlear Limited
Inventors:
Benjamin Peter Johnston, Paul Michael Carter, Stuart John Kay, Andrea Lam, Shaun Ashwin Kumar, Joerg Pesch
Abstract: Presented herein are stand-alone hearing aid adapters configured to enable the use of the recipient's hearing aid to detect and process ambient sound signals and to convert output signals generated by the acoustic hearing aid into input signals useable by the implantable hearing prosthesis for generation and delivery of stimulation to a recipient.