Patents Assigned to Cogent Light Technologies, Inc.
  • Publication number: 20020039293
    Abstract: An optical coupling element for use in large numerical aperture collecting and condensing systems. The optical coupling element includes a lens having a curved surface and a tapered light pipe. The curved surface reduces the angle of incidence of the light striking the input end of the optical coupling element such that the Fresnel reflection is greatly reduced. Electromagnetic radiation emitted by a source is collected and focused onto a target by positioning the source of electromagnetic radiation at a first focal point of a first reflector so that the source produces rays of radiation reflected from the first reflector that converge at a second focal point of the second reflector. The optical coupling element is positioned so that a center of the lens is substantially proximate with the second focal point of the second reflector and the curved surface is between the second reflector and the center.
    Type: Application
    Filed: September 20, 2001
    Publication date: April 4, 2002
    Applicant: Cogent Light Technologies, Inc.
    Inventor: Kenneth K. Li
  • Publication number: 20020012502
    Abstract: The present invention provides a connector assembly comprising (1) a first adapter that releasably connects to light source and transmits optical energy received from the light source along a first optical waveguide; (2) a second adapter that releasably connects to first adapter to receive and transmit optical energy along a second optical waveguide; and (3) an output optical waveguide that receives the transmitted optical energy from the second waveguide and has a proximal connector adapted to fixedly engage the second adapter. In one embodiment, the proximal connector has a slot that allows for the insertion of a clip, and the second adapter has a detente that mechanically engages the clip when it is inserted into the slot in the proximal connector. In this way, the second adapter is fixedly coupled to the proximal connector but may also rotate in relation to the output connector.
    Type: Application
    Filed: February 13, 2001
    Publication date: January 31, 2002
    Applicant: Cogent Light Technologies, Inc.
    Inventors: Harry Farrar, Kenneth K. Li
  • Patent number: 6318885
    Abstract: A method and system for condensing and collecting electromagnetic radiation comprised generally of a radiation source, a reflector and a target is disclosed. The reflector has a reflecting surface for reflecting the radiation from the source which is in the shape of a cut out portion of an ellipsoid. The reflector surface has a substantially ellipsoidal curvature which is concave relative to both the target and the source, and which has a major axis, a minor axis, and a first and second focal points. The system of the present invention redirects radiation emitted from the source, located near the first focal point of the ellipsoid, to produce a magnified image of the source at the target, located near the second focal point of the ellipsoid. To acheive this spot size magnification, the ellipsoidal reflector surface comprises a portion of an ellipsoid which lies between the major and minor axes of the ellipsoid.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: November 20, 2001
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Kenneth K. Li, Chingfa Chen, Marvin Okino
  • Patent number: 6312144
    Abstract: A method and system for condensing and collecting electromagnetic radiation onto a target surface comprised generally of a radiation source, a primary reflector and a retro-reflector having a shape complementary to the shape of the primary reflector is disclosed. The primary reflector has a reflecting surface for reflecting the radiation from the source which is substantially concave in shape. The radiation source emits substantially uniform radiation flux in substantially all directions which is collected by the primary reflector and redirected toward the target surface. The retro-reflector, having a complementary shape which depends upon the shape of the primary reflector, is positioned so as to intercept a portion of the radiation redirected toward the target surface. The retro-reflector reflects the intercepted portion of the radiation back toward said primary reflector along the same path such that the redirected radiation is channeled back through the source.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: November 6, 2001
    Assignee: Cogent Light Technologies, Inc.
    Inventor: Kenneth K. Li
  • Publication number: 20010026450
    Abstract: A portion of a first paraboloid collects and concentrates randomized light from a lamp into parallel beams directed to a portion of a second paraboloid which refocuses the light onto a homogenizer. The second paraboloid has a shape that is substantially similar to the first paraboloid reflector. The source and the target are located at the respective foci of the paraboloids such that the optical flux from the source is imaged to the target with minimal distortion in an approximately no magnification imaging system. The system may be configured to control wavelength and intensity by inserting an additional filter. In addition, a retro-reflector may be added to increase the overall flux density at homogenizer. The output is particular suitable for providing light to the light engine of projectors.
    Type: Application
    Filed: May 1, 2001
    Publication date: October 4, 2001
    Applicant: COGENT LIGHT TECHNOLOGIES, INC.
    Inventor: Kenneth K. Li
  • Patent number: 6231199
    Abstract: An electromagnetic radiation collecting and condensing optical system includes a plurality of cascaded concave paraboloid reflectors and a plurality of electromagnetic radiation or light sources which radiate light energy onto the concave reflectors in such manner that the energy from each source is combined by the reflectors into an output target, such as the end of a single core optical fiber.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: May 15, 2001
    Assignee: Cogent Light Technologies, Inc.
    Inventor: Kenneth K. Li
  • Patent number: 6227682
    Abstract: A portion of a first paraboloid collects and concentrates randomized light from a lamp into parallel beams directed to a portion of a second paraboloid which refocuses the light onto a homogenizer. The second paraboloid has a shape that is substantially similar to the first paraboloid reflector. The source and the target are located at the respective foci of the paraboloids such that the optical flux from the source is imaged to the target with minimal distortion in an approximately no magnification imaging system. The system may be configured to control wavelength and intensity by inserting an additional filter. In addition, a retro-reflector may be added to increase the overall flux density at homogenizer. The output is particular suitable for providing light to the light engine of projectors.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: May 8, 2001
    Assignee: Cogent Light Technologies, Inc.
    Inventor: Kenneth K. Li
  • Patent number: 6186648
    Abstract: An electromagnetic radiation source, such as an arc lamp, is located at a point displaced from the optical axis of a concave toroidal reflecting surface. The concave primary reflector focuses the radiation from the source at an off-axis image point that is displaced from the optical axis. The use of a toroidal reflecting surface enhances the collection efficiency into a small target, such as an optical fiber, relative to a spherical reflecting surface by substantially reducing aberrations caused by the off-axis geometry. A second concave reflector is placed opposite to the first reflector to enhance further the total flux collected by a small target. In accordance with one embodiment, the present invention is directed to devices in which the square of the off-axis distance divided by the radius of curvature is equal to or less than the extent of the source of electromagnetic radiation (y02/r≦s0).
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: February 13, 2001
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Glenn Baker, Karlheinz Strobl, Douglas M. Brenner, Robert L. Piccioni, Robert Fischer, Michael Thomas
  • Patent number: 6129662
    Abstract: A surgical tool with surgical field illuminator includes a light-conveying fiber optic member having a body portion, a light-receiving end optically connectable to a source of light, and a light-delivering end. A surgical tool can be attached to, or surround, part of the body portion of the fiber optic member, and the surgical tool can be connected to the body portion of the fiber optic member. A light-transmitting member is positioned adjacent the light-delivering end of the fiber optic member. A light-delivering port in the surgical tool can be provided. When the light-receiving end of the fiber optic member is optically connected to the source of light, light is transmitted through the fiber optic member to the light-delivering end of the fiber optic member, and through the light-transmitting member at a light density, to illuminate a surgical region adjacent the light-transmitting member.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: October 10, 2000
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Kenneth K. Li, Wayne Smith, Richard B. Davies, Douglas M. Brenner
  • Patent number: 6089741
    Abstract: A method and apparatus for coupling high intensity light into a low melting temperature optical fiber which uses a high temperature, low NA optical fiber as a spatial filter between a source of high intensity light and a low melting temperature, low NA optical fiber. In an alternate embodiment, the spatial filter is composed of a fused bundle of optical fibers. The source of light may be a high intensity arc lamp or may be a high NA, high melting temperature optical fiber transmitting light from a remote light source.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: July 18, 2000
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Chingfa Chen, Kenneth K. Li, Douglas M. Brenner
  • Patent number: 6065882
    Abstract: A proximal connector includes a stainless steel, cone-shaped ferrule enclosing a proximal end of the optic fiber element. The ferrule is inserted within a matching aperture of a receiving block, which is also made of stainless steel. The matching shapes of the ferrule and the aperture of the receiving block ensure effective heat transfer from the ferrule into the receiving block. The receiving block may be provided with cooling vanes, and air may be circulated over the cooling vanes, to dissipate heat transferred to the receiving block from the connector. Both ferrule and the aperture are axially symmetric such that any rotation of the proximal connector while inserted into the receiving block does not change the location of the entrance aperture of the optic fiber element. The proximal connector also includes a case having an indented ring.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: May 23, 2000
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Thomas W. Roller, Kenneth K. Li
  • Patent number: 5954652
    Abstract: A ureteral catheter device composed of a catheter made of light transmitting material, the catheter having a distal end and a proximal end, and being formed to have a drainage lumen that extends between, and is open at the distal and proximal ends, and a second lumen that extends substantially parallel to the drainage lumen; and a single fiber optic filament housed in the second lumen, the fiber optic filament being provided to conduct light in a manner to illuminate the catheter.
    Type: Grant
    Filed: June 13, 1995
    Date of Patent: September 21, 1999
    Assignee: Cogent Light Technologies, Inc.
    Inventor: Arnold M. Heyman
  • Patent number: 5905830
    Abstract: A method and apparatus which can couple a high intensity point source, such as from a single fiber, to a fiber bundle. A bundle of fibers is fed though a hole in the light post. A removable potting compound is applied to the tip of the bundle to hold the fibers together for polishing. The tip of the bundle is polished and then the potting compound is removed from the tip of the bundle. A window is placed over a light inlet of the hole so as to seal the bundle. A point source cable introduces a point source of light to the bundle of fibers. A ferrule is provided around the point source cable, having a diameter sized corresponding to a diameter of said light post. The ferrule and the bundle of fibers are clamped with a split sleeve which extends therebetween.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: May 18, 1999
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Chingfa Chen, Fred P. Paulino, Kenneth K. Li, Douglas M. Brenner
  • Patent number: 5898802
    Abstract: The power handling capability of polymer fibers is increased by broadening an input intensity profile, which is typically Gaussian, without significantly decreasing the efficiency of coupling light into a polymer fiber. The method for increasing the power handling capability of polymer fibers includes the steps of: a) emitting light having a Gaussian intensity profile from a fiber light source; b) broadening the Gaussian intensity profile so that energy at the center of the Gaussian intensity profile is distributed to the perimeter to reduce the peak power intensity of the emitted light before it is launched into the polymer fiber; c) transmitting the emitted light into at least one polymer fiber. Preferably, a fused bundle is used to broaden the intensity profile and preferably the fused bundle has an angled input end face.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: April 27, 1999
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Chingfa Chen, Douglas M. Brenner
  • Patent number: 5881192
    Abstract: A method and apparatus which can couple a high intensity point source, such as from a single fiber, to a fiber bundle. A bundle of fibers is fed though a hole in the light post. A removable potting compound is applied to the tip of the bundle to hold the fibers together for polishing. The tip of the bundle is polished and then the potting compound is removed from the tip of the bundle. A window is placed over a light inlet of the hole so as to seal the bundle. A point source cable introduces a point source of light to the bundle of fibers. A ferrule is provided around the point source cable, having a diameter sized corresponding to a diameter of said light post. The ferrule and the bundle of fibers are clamped with a split sleeve which extends therebetween.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: March 9, 1999
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Chingfa Chen, Fred P. Paulino, Kenneth K. Li, Douglas M. Brenner
  • Patent number: 5836667
    Abstract: An electromagnetic radiation source, such as an arc lamp, is located at a point displaced from the optical axis of a concave toroidal reflecting surface. The concave primary reflector focuses the radiation from the source at an off-axis image point that is displaced from the optical axis. The use of a toroidal reflecting surface enhances the collection efficiency into a small target, such as an optical fiber, relative to a spherical reflecting surface by substantially reducing aberrations caused by the off-axis geometry. A second concave reflector is placed opposite to the first reflector to enhance further the total flux collected by a small target.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 17, 1998
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Glenn Baker, Karlheinz Strobl, Douglas Brenner, Robert L. Piccioni, Robert Fischer, Michael Thomas
  • Patent number: 5764837
    Abstract: The proximal connector includes a stainless steel cone-shaped ferrule enclosing a proximal end of the optic fiber element. The ferrule is inserted within a matching aperture of a receiving block which is also made of stainless steel. The matching shapes of the ferrule and the aperture of the receiving block ensure effective heat transference from the ferrule into the receiving block. Both ferrule and the aperture are axially symmetric such that any rotation of the proximal connector while inserted into the receiving block does not change the location of the entrance aperture of the optic fiber element. The proximal connector also includes a case having an indented ring. A ball plunger biasing mechanism is mounted within the aperture of the receiving block and is positioned for engaging with the indented ring only while the proximal connector is fully and securely inserted within the aperture.
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: June 9, 1998
    Assignee: Cogent Light Technologies, Inc.
    Inventor: Thomas W. Roller
  • Patent number: 5761356
    Abstract: A method and apparatus for coupling high intensity light into a low melting temperature optical fiber which uses a high temperature, low NA optical fiber as a spatial filter between a source of high intensity light and a low melting temperature, low NA optical fiber. The source of light may be a high intensity arc lamp or may be a high NA, high melting temperature optical fiber transmitting light from a remote light source.
    Type: Grant
    Filed: August 19, 1996
    Date of Patent: June 2, 1998
    Assignee: Cogent Light Technologies, Inc.
    Inventor: Kenneth Li
  • Patent number: 5754719
    Abstract: A device which adjusts the angle of illumination of light exiting a fiber optic light guide. A first light guide has a first numerical aperture for emitting light from a light source, and light exiting the first light guide has a first light intensity angular profile. A second light guide has a second numerical aperture for receiving the light from the first light guide, and light exiting the second light guide has a second light intensity angular profile. Light from the first light guide is dispersed by a device including at least a first surface interposed between the first light guide and the second light guide such that light from the first light guide having the first light intensity profile irradiates the first surface and the angular intensity profile of the light irradiating the second light guide is modified so as to cause the second light intensity angular profile to be modified. The first light guide preferably has a single fiber, and the second light guide preferably has a fiber bundle.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: May 19, 1998
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Chingfa Chen, Kenneth K. Li, Douglas M. Brenner
  • Patent number: 5751869
    Abstract: The optical coupler couples light output from the single fiber optic into the fiber optic bundle while preserving the numerical aperture of the beam output from the single fiber optic. The optical coupler also preserves any uniformity in s the beam output from the single fiber optic. The optical coupler includes a collimating device such as a magnifying lens and a diffusing device such as a hemispherical lens array. The collimating device collimates the beam output from the single fiber optic into a parallel beam having a diameter substantially equal to a diameter of the fiber optic bundle. The diffuser device diverges the collimated beam for input into the fiber optic bundle by an amount sufficient to reproduce the numerical aperture of light output from the single fiber optic. A wide variety of optical diffuser devices are disclosed, including spherical convex lens arrays, cylindrical lens arrays, pyramidal lens arrays and fresnel lenses.
    Type: Grant
    Filed: August 8, 1996
    Date of Patent: May 12, 1998
    Assignee: Cogent Light Technologies, Inc.
    Inventors: Kenneth K. Li, Douglas M. Brenner, Chingfa Chen