Patents Assigned to Cogent
-
Patent number: 7020591Abstract: In one embodiment, the invention is a method for generating geometric patterns from an image having a plurality of ridges and mesh points. The method comprising the steps of: establishing a mathematical model according to regional conditions in the image; converting the mathematical model into numerical equations; solving the numerical equations; and transferring the solutions of the numerical equations to respective regions of the image.Type: GrantFiled: January 15, 2002Date of Patent: March 28, 2006Assignee: Cogent Systems, IncInventors: Xiangshu Wei, Ming Hsieh
-
Patent number: 6959372Abstract: A parallel processing architecture comprising a cluster of embedded processors that share a common code distribution bus. Pages or blocks of code are concurrently loaded into respective program memories of some or all of these processors (typically all processors assigned to a particular task) over the code distribution bus, and are executed in parallel by these processors. A task control processor determines when all of the processors assigned to a particular task have finished executing the current code page, and then loads a new code page (e.g., the next sequential code page within a task) into the program memories of these processors for execution. The processors within the cluster preferably share a common memory (1 per cluster) that is used to receive data inputs from, and to provide data outputs to, a higher level processor. Multiple interconnected clusters may be integrated within a common integrated circuit device.Type: GrantFiled: February 18, 2003Date of Patent: October 25, 2005Assignee: Cogent Chipware Inc.Inventors: Richard F. Hobson, Bill Ressl, Allan R. Dyck
-
Patent number: 6854864Abstract: An optical device for increasing the brightness of electromagnetic radiation emitted by a source by folding the electromagnetic radiation back on itself. The source of electromagnetic radiation has a first width, a first input end of a first light pipe has a second width, and a second input end of a second light pipe has a third width. An output end of the first light pipe may be reflective; while an output end of the second light pipe may be transmissive. The source is located substantially proximate to a first focal point of a reflector to produce rays of radiation that reflect from the reflector and substantially converge at a second focal point; and the input ends of the first and second light pipes are located proximate to the second focal point to collect the electromagnetic radiation.Type: GrantFiled: May 19, 2003Date of Patent: February 15, 2005Assignee: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Publication number: 20040257653Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: ApplicationFiled: May 21, 2004Publication date: December 23, 2004Applicant: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Publication number: 20040257655Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: ApplicationFiled: May 21, 2004Publication date: December 23, 2004Applicant: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Publication number: 20040258342Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: ApplicationFiled: May 21, 2004Publication date: December 23, 2004Applicant: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Publication number: 20040257654Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: ApplicationFiled: May 21, 2004Publication date: December 23, 2004Applicant: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Publication number: 20040240057Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: ApplicationFiled: June 30, 2004Publication date: December 2, 2004Applicant: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Publication number: 20040240059Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: ApplicationFiled: July 7, 2004Publication date: December 2, 2004Applicant: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Publication number: 20040240058Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: ApplicationFiled: July 7, 2004Publication date: December 2, 2004Applicant: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Patent number: 6804143Abstract: An SRAM bit cell with cross-coupled inverters has separate write and read buses. Writing is performed through an NMOS pass transistor. Reading is performed through a PMOS transistor. Because the NMOS transistor does not pass a logic 1 as easily as logic 0, assistance is needed to speed up writing of a logic 1 value relative to the time required to write a logic 0 value. An NMOS pre-charge transistor is coupled between the read bus and ground potential; and, a read is performed simultaneously with a write. This conditions the cell by weakening one of the inverters, such that they cross-couple more quickly when a logic 1 value is written into the cell. Alternatively, a single-ended read/write bus can be coupled to the NMOS pass transistor with write-assistance provided by grounding the PMOS pass transistor.Type: GrantFiled: April 2, 2003Date of Patent: October 12, 2004Assignee: Cogent Chipware Inc.Inventor: Richard Frederic Hobson
-
Patent number: 6672740Abstract: A condensing and collecting optical system includes a collimating reflector and focusing reflector. The collimating reflector includes a portion of a paraboloid of revolution having a focal point and an optical axis. The focusing reflector includes a paraboloid of revolution having a focal point and an optical axis. A source of the electromagnetic radiation placed at the focal point of the collimating reflector produces a collimated beam of radiation. The focusing reflector is positioned so as to receive the collimated beam and focus it toward a target positioned at the focal point of the focusing reflector. To achieve maximum illumination at the target, the collimating reflector and the focusing reflector are so constructed and positioned so as to achieve preferably about unit magnification between the source and its focused image, although other magnifications may be achieved.Type: GrantFiled: June 28, 2000Date of Patent: January 6, 2004Assignee: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Patent number: 6634759Abstract: A condensing and collecting optical system includes a first reflector and second reflector. The first and second reflectors and includes a portion of an ellipsoid of revolution having two focal point and an optical axis. A source of electromagnetic radiation is placed at one of the focal points of the first reflector to produce radiation that converges at the second focal point of the first reflector. The second focal points of the reflectors coincide. The second reflector is positioned to receive the radiation after it passes through a second focal point of the second reflector and focuses the radiation toward a target positioned at the first focal point of the second reflector.Type: GrantFiled: September 27, 2000Date of Patent: October 21, 2003Assignee: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Patent number: 6626582Abstract: The present invention provides a connector assembly comprising (1) a first adapter that releasably connects to light source and transmits optical energy received from the light source along a first optical waveguide; (2) a second adapter that releasably connects to first adapter to receive and transmit optical energy along a second optical waveguide; and (3) an output optical waveguide that receives the transmitted optical energy from the second waveguide and has a proximal connector adapted to fixedly engage the second adapter. In one embodiment, the proximal connector has a slot that allows for the insertion of a clip, and the second adapter has a detente that mechanically engages the clip when it is inserted into the slot in the proximal connector. In this way, the second adapter is fixedly coupled to the proximal connector but may also rotate in relation to the output connector.Type: GrantFiled: February 13, 2001Date of Patent: September 30, 2003Assignee: Cogent Light Technologies, Inc.Inventors: Harry Farrar, Kenneth K. Li
-
Patent number: 6619820Abstract: An optical coupling element for use in large numerical aperture collecting and condensing systems. The optical coupling element includes a lens having a curved surface and a tapered light pipe. The curved surface reduces the angle of incidence of the light striking the input end of the optical coupling element such that the Fresnel reflection is greatly reduced. Electromagnetic radiation emitted by a source is collected and focused onto a target by positioning the source of electromagnetic radiation at a first focal point of a first reflector so that the source produces rays of radiation reflected from the first reflector that converge at a second focal point of the second reflector. The optical coupling element is positioned so that a center of the lens is substantially proximate with the second focal point of the second reflector and the curved surface is between the second reflector and the center.Type: GrantFiled: September 20, 2001Date of Patent: September 16, 2003Assignee: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Patent number: 6616304Abstract: A temperature control system for a source of electromagnetic radiation, such as an arc lamp, in a collecting and condensing system including a first reflector having a first focal point and a first optical axis, and a second reflector having a second focal point and a second optical axis. The source may be located proximate to the first focal point of the first reflector to produce rays of radiation that reflect from the first reflector toward the second reflector and substantially converge at the second focal point. A sensor, such as a voltage or a temperature sensor, may be placed near the source, and produces an output which may be substantially proportional to an attribute of the source. A comparator compares the output to a predetermined value and produces a difference between the output and the predetermined value.Type: GrantFiled: October 3, 2001Date of Patent: September 9, 2003Assignee: Cogent Light Technologies, Inc.Inventor: Kenneth K. Li
-
Patent number: 6610295Abstract: HCMV glycoproteins B and H have been identified. The gB protein is encoded by DNA in the HindIII F fragment of the HCMV genome lying between 1378 and 4095 bases from the F/D boundary. The gH protein is encoded by DNA in the HindIII L fragment lying between 228 and 2456 bases from the L/D boundary. The genes have been incorporated in recombinant vaccinia vectors and expressed in host animals to raise HCMV-neutralizing antibody, thereby indicating vaccine potential. The glycoproteins can also be used in a variety of different ways, as vaccines or in the production, purification or detection of HCMV antibody.Type: GrantFiled: May 26, 1995Date of Patent: August 26, 2003Assignee: Cogent LimitedInventors: Geoffrey Lilley Smith, Martin Patrick Cranage, Barclay George Barrell
-
Patent number: 6608268Abstract: A proximity micro-electro-mechanical system (MEMS) utilizing a gaseous capacitive gap between two conductive members. The gaseous gap is maintained by insulating structures that prevent the two conductive members from shorting. Once actuated, the gaseous gap allows high-frequency signals to be transmitted between the two conductive members.Type: GrantFiled: February 5, 2002Date of Patent: August 19, 2003Assignee: MEMtronics, a division of Cogent Solutions, Inc.Inventor: Charles L. Goldsmith
-
Patent number: 6595673Abstract: A fiber optic illumination system with increased power handling capabilities for low melting point fiber optics uses an optical homogenizer. Homogenizers of the present invention preferably comprise a rod with polygonal cross-section. The output intensity of the optical homogenizer is substantially uniform such that the output fiber optic will not be damaged by hot spots created by non-uniform intensity light.Type: GrantFiled: December 20, 1999Date of Patent: July 22, 2003Assignee: Cogent Light Technologies, Inc.Inventors: Ronald A. Ferrante, Kenneth K. Li
-
Patent number: 6587269Abstract: A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system.Type: GrantFiled: March 23, 2001Date of Patent: July 1, 2003Assignee: Cogent Light Technologies Inc.Inventor: Kenneth K. Li