Patents Assigned to COGNIBOTICS AB
  • Publication number: 20230339099
    Abstract: A parallel kinematic machine (PKM) includes a support platform and first, second, and third support linkages. The first, second, and third support linkages together include at least five support links. The PKM further includes a tool base having a shaft joint, a tool base shaft, and a tool platform. The tool base shaft is connected to the support platform via the shaft joint, rigidly connecting the tool platform and the tool base shaft. The PKM also includes one or more tool linkages, each including a tool link connected at one end, via a tool base joint, to the tool base, and at the other end connected, via a tool carriage joint, to a movable carriage. Each tool linkage is configured to rotate the tool base shaft around at least one axis relative to the support platform by transferring a movement of the respective tool linkage to the tool base shaft.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Applicant: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Klas Nilsson, Adam Nilsson, Mattias Svahn, Edvin Malm, Carlos Sedglach
  • Patent number: 11731265
    Abstract: A parallel kinematic machine, PKM, comprising: a support platform (17a), a first support linkage (SL1); a second support linkage (SL2) and a third support linkage (SL3), wherein the first support linkage (SL1), the second support linkage (SL2) and the third support linkage (SL3) together comprises at least five support links (8, 9, 10, 11, 12, 13). The PKM further comprises: a tool base (140) comprising a shaft joint (24, 40, 41, 200, 202, 262a, 262b), a tool base shaft (19) and a tool platform (17b). The tool base shaft (19) is connected to the support platform (17a) via the shaft joint (24, 40, 41, 200, 202, 262a, 262b), and wherein the tool platform (17b) and the tool base shaft (19) are rigidly connected.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: August 22, 2023
    Assignee: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Klas Nilsson, Adam Nilsson
  • Publication number: 20230010862
    Abstract: A robot arm (500) for positioning a tool (44) with controlled orientation. The robot arm (500) comprises an inner-arm linkage (15, 18, 29; 15, 18, 77); an outer-arm linkage (23; 81; 173; 228; 632; 384) and a first actuator (1; 249) configured to rotate the inner-arm linkage about a first axis of rotation (180). The inner-arm linkage includes a first inner link (15) that at an inner end is arranged to rotate around a fourth axis of rotation (185), and a second inner link (18) that at an inner end is arranged to rotate around a different, third axis of rotation (182, 185), wherein the axes of rotation (182, 185) are perpendicular to the first axis of rotation (180), and the rotations result in a geometric reconfiguration of the inner-arm linkage.
    Type: Application
    Filed: December 7, 2020
    Publication date: January 12, 2023
    Applicant: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Klas Nilsson
  • Publication number: 20220388155
    Abstract: A robot arm (500) for end-effector motion. The robot arm comprises a first actuator (4) and a first kinematic chain from the first actuator to an end-effector platform, which gives a first degree of freedom for positioning the end-effector platform. The robot arm also comprises a second actuator (5; 5b) and a second kinematic chain from the second actuator to the end-effector platform, which gives a second degree of freedom for positioning the end-effector platform. The robot arm further comprises a third actuator (6; 6b, 512) and a third kinematic chain from the third actuator (6; 6b) to the end-effector platform, which gives a third degree of freedom for positioning the end-effector platform. The robot arm also comprises a fourth actuator (50; 150) and a fourth kinematic chain configured to transmit a movement of the fourth actuator to a corresponding orientation axis (65) for an end-effector (28).
    Type: Application
    Filed: August 18, 2022
    Publication date: December 8, 2022
    Applicant: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Adam Nilsson, Klas Nilsson
  • Publication number: 20220339782
    Abstract: A method for determining placement of support-platform joints (8a, 9a, 10a, 11a, 12a, 13a) on a support-platform (17) of a parallel kinematic manipulator, PKM. The PKM comprises: the support-platform (17), a first support linkage (SL1), a second support linkage (SL2) and a third support linkage (SL3). The first support linkage (SL1), the second support linkage (SL2) and the third support linkage (SL3) together comprises at least five support-links (8, 9, 10, 11, 12, 13). The method comprises estimating (S1) parameters indicative of stiffness for the PKM, based on a kinematic model and an elastic model of the PKM and chosen defined forces and/or torques applied to a tool (22) during a processing sequence, and checking (S2) whether the estimated parameters indicative of stiffness of the PKM fulfill one or more stiffness criteria.
    Type: Application
    Filed: October 1, 2020
    Publication date: October 27, 2022
    Applicant: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Klas Nilsson, Peter Helgosson
  • Patent number: 11453118
    Abstract: A robot arm (500) for end-effector motion. The robot arm comprises a first actuator (4) and a first kinematic chain from the first actuator to an end-effector platform, which gives a first degree of freedom for positioning the end-effector platform. The robot arm also comprises a second actuator (5; 5b) and a second kinematic chain from the second actuator to the end-effector platform, which gives a second degree of freedom for positioning the end-effector platform. The robot arm further comprises a third actuator (6; 6b, 512) and a third kinematic chain from the third actuator (6; 6b) to the end-effector platform, which gives a third degree of freedom for positioning the end-effector platform. The robot arm also comprises a fourth actuator (50; 150) and a fourth kinematic chain configured to transmit a movement of the fourth actuator to a corresponding orientation axis (65) for an end-effector (28).
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: September 27, 2022
    Assignee: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Adam Nilsson, Klas Nilsson
  • Publication number: 20220281100
    Abstract: A parallel kinematic machine, PKM, comprising: a support platform (17a), a first support linkage (SL1); a second support linkage (SL2) and a third support linkage (SL3), wherein the first support linkage (SL1), the second support linkage (SL2) and the third support linkage (SL3) together comprises at least five support links (8, 9, 10, 11, 12, 13). The PKM further comprises: a tool base (140) comprising a shaft joint (24, 40, 41, 200, 202, 262a, 262b), a tool base shaft (19) and a tool platform (17b). The tool base shaft (19) is connected to the support platform (17a) via the shaft joint (24, 40, 41, 200, 202, 262a, 262b), and wherein the tool platform (17b) and the tool base shaft (19) are rigidly connected.
    Type: Application
    Filed: August 17, 2020
    Publication date: September 8, 2022
    Applicant: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Klas Nilsson, Adam Nilsson
  • Patent number: 11305431
    Abstract: The disclosure relates to a system (1) and method for instructing a robot. The system (1) comprising an immersive haptic interface, such that operator interaction with a master robot arm (2) is reflected by a slave robot arm (3) arranged for interaction with a workpiece (4). The interaction of the slave robot arm (3) is reflected back to the master robot arm (2) as haptic feedback to the operator. The dynamic system is continually simulated forward and new commands are calculated for the master robot arm and the slave robot arm.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: April 19, 2022
    Assignee: COGNIBOTICS AB
    Inventors: M. Mahdi Ghazaei Ardakani, Klas Nilsson
  • Patent number: 11192243
    Abstract: A method and system for determining geometric properties of a manipulator (2). The manipulator (2) is controlled to perform constrained motions exhibiting force interaction with the environment, or between different links of the manipulator (2), such that a kinematic chain is formed mechanically. The chain may include peripherals and external axes of motion. A constraining device, enables motions that facilitate the determination of geometric properties. A unified model of joint and link compliances facilitates determination of stiffness parameters. The force interaction is controlled with awareness of friction such that non-geometric properties are possible to identify, thereby enabling separation of non-geometric effects from the geometric ones, which improves accuracy.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: December 7, 2021
    Assignee: COGNIBOTICS AB
    Inventors: Klas Nilsson, Adam Nilsson, Andreas Stolt, Olof Sornmo, Martin Holmstrand, Niklas Nilsson
  • Patent number: 11118324
    Abstract: A multi-backhoe linkage mechanism, operable for rotating an output link around an output axis of rotation of an output joint at a base, includes a first closed kinematic chain, including the output link, a connecting link, and an input link. The output link is connected via the output joint to the base and via a connecting joint to the connecting link. The connecting link is connected via a bridging joint to the input link. The first closed kinematic chain additionally includes a base link connected to the base and to the input link. One or more additional closed kinematic chains are connected in a series after the first closed kinematic chain. Each additional closed kinematic chain is connected to the previous closed kinematic chain such that actuation of the additional closed kinematic chain amplifies the angle of rotation of the output link around the output axis of rotation.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: September 14, 2021
    Assignee: Cognibotics AB
    Inventor: Adam Nilsson
  • Publication number: 20200391374
    Abstract: A robot arm (500) for end-effector motion. The robot arm comprises a first actuator (4) and a first kinematic chain from the first actuator to an end-effector platform, which gives a first degree of freedom for positioning the end-effector platform. The robot arm also comprises a second actuator (5; 5b) and a second kinematic chain from the second actuator to the end-effector platform, which gives a second degree of freedom for positioning the end-effector platform. The robot arm further comprises a third actuator (6; 6b, 512) and a third kinematic chain from the third actuator (6; 6b) to the end-effector platform, which gives a third degree of freedom for positioning the end-effector platform. The robot arm also comprises a fourth actuator (50; 150) and a fourth kinematic chain configured to transmit a movement of the fourth actuator to a corresponding orientation axis (65) for an end-effector (28).
    Type: Application
    Filed: January 11, 2019
    Publication date: December 17, 2020
    Applicant: COGNIBOTICS AB
    Inventors: Torgny Brogardh, Adam Nilsson, Klas Nilsson
  • Publication number: 20200370274
    Abstract: A multi-backhoe linkage mechanism, operable for rotating an output link around an output axis of rotation of an output joint at a base, includes a first closed kinematic chain, including the output link, a connecting link, and an input link. The output link is connected via the output joint to the base and via a connecting joint to the connecting link. The connecting link is connected via a bridging joint to the input link. The first closed kinematic chain additionally includes a base link connected to the base and to the input link. One or more additional closed kinematic chains are connected in a series after the first closed kinematic chain. Each additional closed kinematic chain is connected to the previous closed kinematic chain such that actuation of the additional closed kinematic chain amplifies the angle of rotation of the output link around the output axis of rotation.
    Type: Application
    Filed: May 21, 2019
    Publication date: November 26, 2020
    Applicant: COGNIBOTICS AB
    Inventor: Adam Nilsson
  • Publication number: 20200370275
    Abstract: A multi-backhoe linkage mechanism, operable for rotating an output link around an output axis of rotation of an output joint at a base, includes a first closed kinematic chain, including the output link, a connecting link, and an input link. The output link is connected via the output joint to the base and via a connecting joint to the connecting link. The connecting link is connected via a bridging joint to the input link. The first closed kinematic chain additionally includes a base link connected to the base and to the input link. One or more additional closed kinematic chains are connected in a series after the first closed kinematic chain. Each additional closed kinematic chain is connected to the previous closed kinematic chain such that actuation of the additional closed kinematic chain amplifies the angle of rotation of the output link around the output axis of rotation.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 26, 2020
    Applicant: COGNIBOTICS AB
    Inventor: Adam Nilsson
  • Publication number: 20200298403
    Abstract: A method and system for determining geometric properties of a manipulator (2). The manipulator (2) is controlled to perform constrained motions exhibiting force interaction with the environment, or between different links of the manipulator (2), such that a kinematic chain is formed mechanically. The chain may include peripherals and external axes of motion. A constraining device, enables motions that facilitate the determination of geometric properties. A unified model of joint and link compliances facilitates determination of stiffness parameters. The force interaction is controlled with awareness of friction such that non-geometric properties are possible to identify, thereby enabling separation of non-geometric effects from the geometric ones, which improves accuracy.
    Type: Application
    Filed: March 27, 2017
    Publication date: September 24, 2020
    Applicant: COGNIBOTICS AB
    Inventors: Klas Nilsson, Adam Nilsson, Andreas Stolt, Olof Sornmo, Martin Holmstrand, Niklas Nilsson
  • Publication number: 20190358817
    Abstract: The disclosure relates to a system (1) and method for instructing a robot. The system (1) comprising an immersive haptic interface, such that operator interaction with a master robot arm (2) is reflected by a slave robot arm (3) arranged for interaction with a workpiece (4). The interaction of the slave robot arm (3) is reflected back to the master robot arm (2) as haptic feedback to the operator. The dynamic system is continually simulated forward and new commands are calculated for the master robot arm and the slave robot arm.
    Type: Application
    Filed: November 8, 2017
    Publication date: November 28, 2019
    Applicant: COGNIBOTICS AB
    Inventors: M. Mahdi Ghazaei Ardakani, Klas Nilsson
  • Patent number: 9908238
    Abstract: A method and system for determining at least one property associated with a selected axis of a manipulator (2). The elasticity of the links (4, 6, 9, 10, 13, 14) and joints (3, 5, 7, 8, 11, 12) of a manipulator (2) can be modeled and the resulting compliance can be determined. A certain method is used to control the manipulator (2) such that certain quantities related to actuator torque and/or joint position can be determined for a certain kinematic configuration of the manipulator (2). Depending on the complexity of the manipulator (2) and the number of properties that are of interest, the manipulator (2) is controlled to a plurality of different kinematic configurations in which configurations the quantities are determined. Thereafter, a stiffness matrix (K) for each component of the manipulator (2) can be determined, and a global stiffness matrix (MSM) for the total manipulator (2) can be determined in order to determine at least one property of the selected axis.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: March 6, 2018
    Assignee: COGNIBOTICS AB
    Inventors: Klas Nilsson, Adam Nilsson, Mathias Haage, Bjorn Olofsson, Anders Robertsson, Olof Sornmo
  • Patent number: 9645565
    Abstract: The invention relates to a method for determining at least one property of a joint, such as a joint (112, 114, 116-119, 180) of a manipulator (110), wherein said joint is configured to be driven by at least one actuator, the actuator being configured to drive said joint (112, 114, 116-119, 180) via a drivetrain. The method comprises: clamping (200) said joint such that motion of the joint becomes constrained, and actuating (210) said drivetrain while monitoring at least one quantity associated with a torque of said actuator and at least one quantity associated with the actuator position in order to determine (220) at least one output value of said actuator, said output value corresponding to at least one joint position and determining (230) the at least one property of the joint based on said at least one output value. The invention further relates to a system for determining the at least one property of a joint.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 9, 2017
    Assignee: COGNIBOTICS AB
    Inventor: Klas Nilsson
  • Publication number: 20160221189
    Abstract: A method and system for determining at least one property associated with a selected axis of a manipulator (2). The elasticity of the links (4, 6, 9, 10, 13, 14) and joints (3, 5, 7, 8, 11, 12) of a manipulator (2) can be modeled and the resulting compliance can be determined. A certain method is used to control the manipulator (2) such that certain quantities related to actuator torque and/or joint position can be determined for a certain kinematic configuration of the manipulator (2). Depending on the complexity of the manipulator (2) and the number of properties that are of interest, the manipulator (2) is controlled to a plurality of different kinematic configurations in which configurations the quantities are determined. Thereafter, a stiffness matrix (K) for each component of the manipulator (2) can be determined, and a global stiffness matrix (MSM) for the total manipulator (2) can be determined in order to determine at least one property of the selected axis.
    Type: Application
    Filed: August 25, 2014
    Publication date: August 4, 2016
    Applicant: COGNIBOTICS AB
    Inventors: Klas Nilsson, Adam Nilsson, Mathias Haage, Bjorn Olofsson, Anders Robertsson, Olof Sornmo
  • Publication number: 20150248121
    Abstract: The invention relates to a method for determining at least one property of a joint, such as a joint (112, 114, 116-119, 180) of a manipulator (110), wherein said joint is configured to be driven by at least one actuator, the actuator being configured to drive said joint (112, 114, 116-119, 180) via a drivetrain. The method comprises: clamping (200) said joint such that motion of the joint becomes constrained, and actuating (210) said drivetrain while monitoring at least one quantity associated with a torque of said actuator and at least one quantity associated with the actuator position in order to determine (220) at least one output value of said actuator, said output value corresponding to at least one joint position and determining (230) the at least one property of the joint based on said at least one output value. The invention further relates to a system for determining the at least one property of a joint.
    Type: Application
    Filed: October 21, 2013
    Publication date: September 3, 2015
    Applicant: COGNIBOTICS AB
    Inventor: Klas Nilsson