Abstract: A photonic computing system is presented. The system comprises an arrangement of multiple photonic processing units having input and output ports, each of the photonic processing units comprising an array of photonic guiding units configured to define propagation conditions for multiple light fields associated with one or more optical processing tasks. The system also comprises a plurality of optical connectors, each of the optical connectors performing light field to light field coupling between the input and output ports of the photonic processing units, thereby providing a network of communicating processing units. The photonic computing system can be configured as a module enabling its housing in a network rack.
Abstract: A wavelength multiplexing system is presented comprising at least one basic functional unit extending between input and output light ports. The basic functional unit comprises at least one multi-core fiber. The multi-core fiber comprises N cores configured for supporting transmission of N wavelength channels ?1, . . . , ?n, wherein each of said at least one multi-core fibers is configured to apply a predetermined encoding pattern to the wavelength channels enabling linear mixing between them while propagating through multiple cores of said multi-core fiber. The encoding pattern may be configured to affect light propagation paths in the cores by inducing a predetermined dispersion pattern causing linear interaction and mixing between the channels; or may be configured to affect spectral encoding of the channels being transmitted through the cores by applying different weights to the channels.