Patents Assigned to Coherent Navigation, Inc.
-
Patent number: 9121940Abstract: A navigation system includes a navigation radio and a sensor onboard a vehicle. The navigation radio receives and processes low earth orbit RF signals to derive range observables for a corresponding LEO satellite. A sensor is operable to generate at least one of vehicle speed data, acceleration data, angular rate data and rotational angle data under high vehicle dynamics. The navigation radio includes a navigation code operable to obtain a position, velocity and time solution (a “navigation solution”) based on the one or more range observables, ephemerides for the corresponding LEO satellite, a heading pseudomeasurement, a navigation radio altitude pseudomeasurement; one or more vehicle velocity pseudomeasurements orthogonal to the altitude pseudomeasurements; and the generated at least one of vehicle speed data, acceleration data, angular rate data and rotational angle data. The navigation radio uses the navigation solution to acquire a GPS signal during interference with a coarse acquisition GPS signal.Type: GrantFiled: February 24, 2014Date of Patent: September 1, 2015Assignee: Coherent Navigation, Inc.Inventors: Mark Lockwood Psiaki, Isaac Thomas Miller, Brent Michael Ledvina
-
Publication number: 20150042511Abstract: A system and method of continuous carrier wave reconstruction includes a radio navigation receiver that includes one or more processors, memory coupled to the one or more processors, and an input for receiving a signal from a transmitter. The signal has a phase. The one or more processors are configured to obtain phase lock on the received signal, extract first phase information from the received signal, detect a loss in phase lock on the received signal, and extrapolate second phase information while phase lock is lost using a model of the phase. In some embodiments, the one or more processors are further configured to reconstruct the carrier signal based on the first and second phase information. In some embodiments, the one or more processors are further configured to scale the first and second phase information from a first nominal frequency of the received signal to a different second nominal frequency.Type: ApplicationFiled: April 3, 2014Publication date: February 12, 2015Applicant: Coherent Navigation, Inc.Inventors: Isaac T. Miller, William J. Bencze, Robert W. Brumley, Brent M. Ledvina, Mark L. Psiaki, Thomas J. Holmes, Clark E. Cohen
-
Publication number: 20140232592Abstract: A navigation system includes a navigation radio and a sensor onboard a vehicle. The navigation radio receives and processes low earth orbit RF signals to derive range observables for a corresponding LEO satellite. A sensor is operable to generate at least one of vehicle speed data, acceleration data, angular rate data and rotational angle data under high vehicle dynamics. The navigation radio includes a navigation code operable to obtain a position, velocity and time solution (a “navigation solution”) based on the one or more range observables, ephemerides for the corresponding LEO satellite, a heading pseudomeasurement, a navigation radio altitude pseudomeasurement; one or more vehicle velocity pseudomeasurements orthogonal to the altitude pseudomeasurements; and the generated at least one of vehicle speed data, acceleration data, angular rate data and rotational angle data. The navigation radio uses the navigation solution to acquire a GPS signal during interference with a coarse acquisition GPS signal.Type: ApplicationFiled: February 24, 2014Publication date: August 21, 2014Applicant: Coherent Navigation, Inc.Inventors: Mark Lockwood Psiaki, Isaac Thomas Miller, Brent Michael Ledvina
-
Patent number: 8682581Abstract: A navigation system includes a navigation radio and a sensor onboard a vehicle. The navigation radio receives and processes low earth orbit RF signals to derive range observables for a corresponding LEO satellite. A sensor is operable to generate at least one of vehicle speed data, acceleration data, angular rate data and rotational angle data under high vehicle dynamics. The navigation radio includes a navigation code operable to obtain a position, velocity and time solution (a “navigation solution”) based on the one or more range observables, ephemerides for the corresponding LEO satellite, a heading pseudomeasurement, a navigation radio altitude pseudomeasurement; one or more vehicle velocity pseudomeasurements orthogonal to the altitude pseudomeasurements; and the generated at least one of vehicle speed data, acceleration data, angular rate data and rotational angle data. The navigation radio uses the navigation solution to acquire a GPS signal during interference with a coarse acquisition GPS signal.Type: GrantFiled: March 28, 2011Date of Patent: March 25, 2014Assignee: Coherent Navigation, Inc.Inventors: Mark Lockwood Psiaki, Isaac Thomas Miller, Brent Michael Ledvina
-
Patent number: 7978130Abstract: A practical method for adding new high-performance, tightly integrated Nav-Com capability to any Global Navigation Satellite System (GNSS) user equipment requires no hardware modifications to the existing user equipment. In one example, the iGPS concept is applied to a Defense Advanced GPS Receiver (DAGR) and combines Low Earth Orbiting (LEO) satellites, such as Iridium, with GPS or other GNSS systems to significantly improve the accuracy, integrity, and availability of Position, Navigation, and Timing (PNT) and to enable new communication enhancements made available by the synthesis of precisely coupled navigation and communication modes. To achieve time synchronization stability between the existing DAGR and a plug-in iGPS enhancement module, a special-purpose wideband reference signal is generated by the iGPS module and coupled to the DAGR via the existing antenna port.Type: GrantFiled: May 1, 2009Date of Patent: July 12, 2011Assignee: Coherent Navigation, Inc.Inventors: Clark E. Cohen, Todd E. Humphreys, Brent M. Ledvina, William J. Bencze, Mark L. Psiaki, Bryan T. Galusha