Patents Assigned to Combustion Electromagnetics, Inc.
  • Publication number: 20090133677
    Abstract: An improved ignition-combustion system for internal combustion engines with preferably a 2-valve engine 17/18 with dual-ignition 14a,14b with squish-flow channels 12a, 12b, and cylindrical high energy density pencil coils with open ends including biasing magnets 42a to 42d, the spark being 300 to 450 ma peak secondary current Is, and the primary current being 20 to 25 amps Ip of 60 to 100 turns Np, or bifiler turns of 120 to 200 turns of wire, with turns ratio Ns/Np of 50 to 70, and coil switches being 600 volt IGBTs; and power convertor with energy storage capacitor storing many times the coil energy of 80 mJ to 160 mJ, of 20 to 60) volts power supply, the engine operating with a single ignition firing of 80 to 16 mJ, except when it is cold started or requires multi-firing for better performance, such as under lean burn or high EGR operation.
    Type: Application
    Filed: September 9, 2005
    Publication date: May 28, 2009
    Applicant: Combustion Electromagnetics, Inc.
    Inventor: Michael A.V. Ward
  • Patent number: 7318397
    Abstract: A piston (10), a spring (15) operatively coupled to a piston, the spring being inside (21) or outside (41) the piston, and if the spring is inside the piston, the diameter of the spring is equal to 0.7 to 0.9, and if it is outside of the piston it is an external coil spring which is outside the cylinder which contains the piston and is able to provide a force of thousands of pounds per inch, and furthermore so that at light load the compression ratio (CR) is greater than 13 to 1 designated as CR0, at medium load has a compression ratio less then CR0 but greater than CReff, and at wide open throttle (WOT) has a CR equal to Creff, the CR is less than CR0 as would occur at medium or higher load which would lead to a flexing of the spring, and the cycle on the compression stroke is known as the HCX cycle where the pressure goes between Ppre and less than or equal to Pf.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: January 15, 2008
    Assignee: Combustion Electromagnetics Inc.
    Inventor: Michael A. V. Ward
  • Publication number: 20060005793
    Abstract: A piston (10), a spring (15) operatively coupled to a piston, the spring being inside (21) or outside (41) the piston, and if the spring is inside the piston, the diameter of the spring is equal to 0.7 to 0.9, and if it is outside of the piston it is an external coil spring which is outside the cylinder which contains the piston and is able to provide a force of thousands of pounds per inch, and furthermore so that at light load the compression ratio (CR) is greater than 13 to 1 designated as CR0, at medium load has a compression ratio less then CR0 but greater than CReff, and at wide open throttle (WOT) has a CR equal to Creff, the CR is less than CR0 as would occur at medium or higher load which would lead to a flexing of the spring, and the cycle on the compression stroke is known as the HCX cycle where the pressure goes between Ppre and less than or equal to Pf.
    Type: Application
    Filed: May 27, 2005
    Publication date: January 12, 2006
    Applicant: Combustion Electromagnetics, Inc.
    Inventor: Michael Ward
  • Publication number: 20050284429
    Abstract: A piston 10, a spring operatively coupled to a piston, the spring being inside 21 or outside 41 the piston, and if the spring is inside the piston, the diameter of the spring is equal to 0.7 to 0.9, and if it is outside of the piston it is an external coil spring which is outside the cylinder which contains the piston and is able to provide a force of thousands of pounds per inch, and furthermore so that at light load the compression ratio (CR) is greater than 13 to 1 designated as CR0, at medium load has a compression ratio less then CR0 but greater than CReff, and at wide open throttle (WOT) has a CR equal to Creff, the CR is less than CR0 as would occur at medium or higher load which would lead to a flexing of the spring, and the cycle on the compression stroke is known as the HCX cycle where the pressure goes between Ppre and less than or equal to Pf.
    Type: Application
    Filed: April 1, 2005
    Publication date: December 29, 2005
    Applicant: Combustion Electromagnetics, Inc.
    Inventor: Michael Ward
  • Publication number: 20050241612
    Abstract: An improved ignition-engine system for internal combustion engines comprising a compact combustion chamber in the cylinder head and two main squish zones (101 a, 101 b) for producing high flow and turbulence, and at least one minor squish zone (105) at the end of the intake valve (104), the system using one or two independently operated spark plugs (102a, 102b), placed asymmetrically at or near the edge of the high flow squish zones to handle both ultra-lean light load conditions and high load conditions without misfire or knocking, the engine leanness and high load operation further improved by using variable compression ratio and/or direct fuel injection, including air-blast fuel injectors (181) and more centrally located air-blast-ignition fuel injector (193) more ideally suited for four valve engines and mild hybrid engines.
    Type: Application
    Filed: April 19, 2003
    Publication date: November 3, 2005
    Applicant: Combustion Electromagnetics, Inc.
    Inventor: Michael Ward
  • Publication number: 20050241627
    Abstract: A high energy inductive coil-per-plug ignition system operating at a higher voltage Vc than battery voltage Vb by use of boost-type power converter (1), using high energy density low inductance coils Ti which are further improved by partial encapsulation of the coils and by use of biasing magnets (120) in the large air gaps in the core to increase coil energy density, the coils connected to capacitive type spark plugs, with improved halo-disc type firing ends, by means of improved suppression wire (78), the system operated and controlled by a micro-controller (8) to generate and control the coil charge time Tch, the sequencing the spark firing, and other control features including finding the firing cylinder by simultaneous ignition firing and sensing during engine cranking, to provide a highly controlled and versatile ignition system capable of producing high energy flow-coupling ignition sparks with relatively fewer and smaller parts.
    Type: Application
    Filed: April 19, 2003
    Publication date: November 3, 2005
    Applicant: Combustion Electromagnetics, Inc.
    Inventor: Michael Ward
  • Patent number: 5558071
    Abstract: A high efficiency high power DC to DC power converter and controller system for a CD ignition system with a simple converter controller (8) for controlling a power switch (2) of a transformer (1) operated as a flyback which includes a lossless snubber (6) and simple current sensor (8a) for sensing and controlling the power converter current, and further including ignition trigger conditioner (9) and phase conditioner (10) for operating a trigger output circuit (11) based on an octal counter (67) for triggering ignition coil circuits of a preferred distributorless ignition circuit of the hybrid ignition system type.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: September 24, 1996
    Assignee: Combustion Electromagnetics, Inc.
    Inventors: Michael A. V. Ward, Winfield Hill, Arthur J. Pennell
  • Patent number: 5551411
    Abstract: Lean burn, exhaust gas recirculating internal combustion engine system (10) and process of operation wherein a motor driven valve (16) governs tapping of exhaust gas via a conduit (11) to the high pressure side of a throttle (14) in an air intake region of the engine with control of the valve and lean burn to maintain a) lean operation with high exhaust dilution at light engine loads, b) high exhaust dilution and high overall dilution at medium to high engine loads and c) smooth transition between a) and b).
    Type: Grant
    Filed: February 2, 1995
    Date of Patent: September 3, 1996
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 5517961
    Abstract: An improved spark ignition engine system producing a large continuous, centrally directed, flow coupled ignition spark discharge through combustion chamber (1), piston (4), inlet system (28/29), spark plug (5), and ignition spark discharge (26) design, and through the location and orientation, with respect to the mixture flow field, of a special design firing end and gap (7/9) of a spark plug fired with a spark discharge of hundreds of watts of power for hundreds of microseconds without spark segmentation or spark break-up by the flow field of up to about 20 m/sec flow velocity, with bulk flow occurring at the spark plug site at most engine speeds including low speeds to produce a very large centrally directed spark-initial flame front kernel which allows for substantial dilution of the mixture and significant reduction in engine cycle-to-cycle variation under most operating conditions of the engine including low speed light load.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: May 21, 1996
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 5456241
    Abstract: A high power high energy ignition system for internal combustion engines using an energy storage capacitor (4), resonating inductor (3) and one or more coils Ti with switches Si for each coil Ti. The system is designed and optimized according to the transient voltage doubling formulation and certain coil magnetic flux formulations to produce a very high power, very high energy, high efficiency ignition powered and controlled by a power converter (14) and controller (15) to produce an initial high frequency spark pulse followed by moderate firing longer duration spark pulses or continuously firing spark oscillations for delivery to the air-fuel mixture of an engine with total spark energy approximately independent of engine speed. The energy is delivered by means of a toroidal gapped spark plug (46) with extended electrodes (48a) to maximize ignition kernel size and minimize spark plug erosion and fouling.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: October 10, 1995
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 5315982
    Abstract: A high efficiency, high output, compact ignition coil particularly suited for use in capacitive discharge, multiple pulsing ignition systems, with about ten turns of primary (1) wire (Np) and about five hundred fifty turns of secondary (2) wire (Ns) for an input voltage Vp of approximately 350 volts and a peak output voltage Vs of 30 kV, the core and windings of the coil featuring separate and different primary (31) and secondary (41) core halves structured on the basis of herein developed coil open and closed circuit criteria such that the core half (31) containing the primary winding has a large center post (32) of cross-sectional area Ap with a narrow slot of width W1 around the post (32) for winding the primary wire (1) to provide essentially the total required coil leakage inductance Lpe of about 50 uH for an input capacitance of about 5 uF and spark discharge frequency fcc of about 10 kHz, and the secondary core (41) structured to have a center post (42) of cross-sectional area As about half that of Ap
    Type: Grant
    Filed: April 15, 1992
    Date of Patent: May 31, 1994
    Assignee: Combustion Electromagnetics, Inc.
    Inventors: Michael A. V. Ward, Richard Redl
  • Patent number: 5207208
    Abstract: A high power high energy capacitive discharge (CD) ignition system for internal combustion engines using a separate resonating inductor (7) in the discharge circuit which is constructed and arranged to provide suitable operation of the discharge circuit and to allow coupling of energy from a voltage source (13a) for storage in the inductor (7) for delivery to the CD system discharge capacitor (4) during the operation of the ignition to help maintain energy during the preferred mode of multiple spark pulse firings of an ignition spark in a preferred large toroidal gap spark plug and to recharge the capacitor (4) between firings.
    Type: Grant
    Filed: June 16, 1992
    Date of Patent: May 4, 1993
    Assignee: Combustion Electromagnetics Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4868730
    Abstract: A DC to DC power converter designated a synchronous current pump (13) and operated in the preferred mode in synchronization with a discharge circuit (11) and using a capacitor (28) as the energy storage element, and in the preferred embodiment has in series with said capacitor the battery supply (10), an inductor (30), a diode (27a), and the primary winding (31a) of a transformer (31); and across said storage capacitor is an energy transfer FET switch (33) which is used for discharging said capacitor and transferring it stored energy to a output load capacitor (4) connected through a diode (32) to the secondary winding of said transformer. In operation, the current pump supplies power efficiently and smoothly to a load discharge capacitor in synchronization with operation of the discharge circuit.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: September 19, 1989
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4841925
    Abstract: An ignition system for hydrocarbon fuels based in part on the principle of "flame discharge ignition" of coupling ignition energy to the initial flame front plasma either as a "pulsing flame discharge ignition" or an "enhanced conventional discharge ignition". Electrical, geometrical, spark, and hydrocarbon flame front plasma discharge properties are taken into account and adjusted or tailored to create a flame discharge ignition process capable of igniting very lean mixtures. The system is further improved by modifying the fuel's flame front plasma properties by increasing the ratio of the carbon to hydrogen (C/H) content of the fuel and/or by using additives to further increase the flame front plasma density without reducing the plasma recombination coefficient.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: June 27, 1989
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4774914
    Abstract: An Electromagnetic Ignition system suitable for adaptation to standard automobile engines including diesel engines, which has been improved by means of a high efficiency RF capacitive spark plug with a projecting antenna tip used for forming very large spark gaps to the plug shell and piston face as well as for coupling high electric fields to the local initial flame plasma, preferably used in combination with shielded high voltage cable including series inductive choke elements and a Capacitive Discharge ignition system incorporating an input capacitor, a SCR switch, an ignition coil with an optimized high current and high output voltage, and preferably a synchronous DC-DC power converter providing "boost power" during ignition so that substantial capacitive, inductive, and electromagnetic energy is supplied to the air-fuel mixture. Preferably the coil has a turns ratio of 50 with the input capacitor having a capacitance between 5 and 10 microfarads and a 400 volts rating.
    Type: Grant
    Filed: July 15, 1986
    Date of Patent: October 4, 1988
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4688538
    Abstract: A versatile rapid pulsing multiple pulse ignition controller (17) used in conjunction with an converter power supply (13) with a voltage sensor/controller (16) and with an ignition coil (3) and energy capacitor (4) comprising an ignition system providing rapid firing multiple ignition sparks at high converter power supply efficiency; which ignition system is suitable for installation on existing automobile engines and other internal combustion engines including diesel engines. The ignition is powered by an converter (13) working as a gated oscillator driving a power amplifier which is turned off by voltage level sensor/controller (16) when the converter output (14a) reaches a preset value or ground potential, as when an ignition pulse is occurring, giving converter (13) the highest possible efficiency and minimum power dissipation. Controlled ignition firing and multiple pulsing is provided by a multiple pulse controller (17) connected to breaker points or other electronic trigger (18).
    Type: Grant
    Filed: December 31, 1984
    Date of Patent: August 25, 1987
    Assignee: Combustion Electromagnetics, Inc.
    Inventors: Michael A. V. Ward, Robert P. Lefevre
  • Patent number: 4677960
    Abstract: A capacitive discharge pulsed plasma ignition system which is suitable for retrofitting to standard automobile engines, and easily adaptable to new engines, including diesel engines, which has been substantially improved by using a novel ultra-high efficiency ignition transformer (coil) (3) with an optimized high current and high voltage output. The ignition is preferably used with a high pulse rate, high efficiency, multiple pulse ignition box providing rapid pulsed plasma ignition sites. The coil (3) has a low winding turns ratio of about 40, low primary (1,11) and secondary (2,12) inductances and resistances, low loss in its core (3a), low secondary capacitance (5), and is used in conjunction with a capacitor (4) of capacitance between 1 and about 20 microfarads. The system uses voltage doubling at the spark gap (9) through coil/capacitor design combination to fire a wide spark gap (9) and provide a very high current.
    Type: Grant
    Filed: December 31, 1984
    Date of Patent: July 7, 1987
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4561406
    Abstract: An internal combustion engine combustion chamber suitable for electromagnetic stimulation of combustion which has been improved by the addition of combustion chamber periphery extensions (wings) filled with dielectric material. The wing dimensions and filler dielectric material are chosen to allow for specification of the chamber EM resonant frequency, preferably at a frequency in the UHF range (where low cost DC operated devices can be used) and at an industrial allocated frequency. The wing chamber EM resonant modes are further designed to place relatively high electrical currents at the wing tips (which are totally closed surfaces), and low EM currents at the piston-cylinder gaps, thus eliminating the need for EM chokes. The EM feature of the chamber is further improved by shaping the piston face and/or cylinder head face in conjunction with the wing design to further lower the EM operating frequency and improve frequency stability with respect to piston motion about TDC.
    Type: Grant
    Filed: May 25, 1984
    Date of Patent: December 31, 1985
    Assignee: Combustion Electromagnetics, Inc.
    Inventor: Michael A. V. Ward
  • Patent number: 4499872
    Abstract: An improved carburetted internal combustion engine (10) which operates with an extremely lean mixture, without a conventional cooling system, and at an elevated temperature characteristic of an adiabatic engine. The engine uses two ignition sources (20, 21) symmetrically disposed about the center of the cylinder head, and/or a third igniting and microwave coupling means (19) at the center, to achieve extreme lean mixture combustion and relatively fast burn necessary for adiabatic engine operation. The engine incorporates other features to improve its efficiency and emissions, including engine air-throttling through controlled intake valve closure and unconventional valve timing.
    Type: Grant
    Filed: January 10, 1983
    Date of Patent: February 19, 1985
    Assignee: Combustion Electromagnetics, Inc.
    Inventors: Michael A. V. Ward, Robert P. Lefevre
  • Patent number: 4317068
    Abstract: An improvement on conventional internal combustion ignition systems, which improvement comprises a capacitor connected parallel to the secondary winding of the ignition transformer, and a bypass circuit through which energy stored in the primary circuit is conveyed around the high impedance secondary winding of the circuit transformer to the spark plug after the high voltage at the secondary winding has fired an auxiliary gap to complete the by-pass circuit. The energy originally stored in the primary circuit is discharged at the plug to produce a plasma jet ignition plume.
    Type: Grant
    Filed: October 1, 1979
    Date of Patent: February 23, 1982
    Assignee: Combustion Electromagnetics, Inc.
    Inventors: Michael A. V. Ward, Tai T. Wu