Patents Assigned to Commonwealth Fusion Systems LLC
  • Publication number: 20240088773
    Abstract: A wind turbine generator includes a stator having a plurality of high-temperature superconducting coils. A current is driven through the high-temperature superconducting coils to produce a magnetic field. A rotor comprising one or more phase coils is physically coupled to a wind turbine. As the wind turbine turns the rotor, current is induced in the one or more phase coils to produce electrical power. The phase coils may include conductive material, superconducting material, and/or high-temperature superconducting material.
    Type: Application
    Filed: February 8, 2022
    Publication date: March 14, 2024
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Alexey RADOVINSKY, Michael SEGAL
  • Publication number: 20240013960
    Abstract: A magnet system and method of operating may be used in connection with operating a superconducting electromagnet, for example in a tokamak. The magnet system includes a coil having windings retained within a non-insulated structure, so that current can pass both along the windings to generate a magnetic field, and between the windings. The amount of current passing through the coil is trimmed using a bypass circuit, coupled in parallel to the coil terminals. The bypass circuit is controlled on the basis of measurements of the field components to divert current from passing through the field coil. In this way, the magnetic fields of each of multiple field coils can be brought into mutual uniformity.
    Type: Application
    Filed: March 1, 2021
    Publication date: January 11, 2024
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Alexey RADOVINSKY, Robert MUMGAARD, Theodore GOLFINOPOULOS
  • Publication number: 20230361549
    Abstract: Described are cable joints and related structures and techniques for coupling high temperature superconducting (HTS) cables. A cable joint includes a conductive member having a length which defines the length of the joint and having first and second mounting regions shaped to accept first and second HTS cable with an interface layer comprised of a malleable metal disposed between a surfaces of the first and second mounting regions and surfaces of the first and second HTS cables.
    Type: Application
    Filed: December 2, 2020
    Publication date: November 9, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Zachary HARTWIG, Philip MICHAEL, Brandon N. SORBOM, James IRBY, Rui VIEIRA, William BECK, Erica SALAZAR, Vincent FRY
  • Patent number: 11810712
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: November 7, 2023
    Assignees: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian Labombard, Robert S. Granetz, James Irby, Rui Vieira, William Beck, Daniel Brunner, Jeffrey Doody, Martin Greenwald, Zachary Hartwig, Philip Michael, Robert Mumgaard, Alexey Radovinsky, Shunichi Shiraiwa, Brandon N. Sorbom, John Wright, Lihua Zhou
  • Publication number: 20230282400
    Abstract: A method includes inserting a high temperature superconductor (HTS) cable into a groove of a support structure; and flowing a molten metal into the HTS cable while the HTS cable is in the groove. A magnet structure includes a support structure having a groove; and a high temperature superconductor (HTS) cable comprising a metal at least partially filling the HTS cable, the HTS cable being disposed in the groove.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 7, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Alexey RADOVINSKY, Brian LABOMBARD, Robert MUMGAARD
  • Publication number: 20230146164
    Abstract: According to some aspects, techniques are described for designing non-insulated (NI) high temperature superconductor (HTS) magnets that mitigate problems that may arise during quench initiation and propagation. Coupling the HTS material to a co-conductor along its length reduces the effective resistance of the conductive path along the HTS material when it is not superconducting, and that this leads to numerous advantages for quench mitigation.
    Type: Application
    Filed: March 25, 2021
    Publication date: May 11, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian LABOMBARD, Krishna Kiran Kumar UPPALAPATI
  • Publication number: 20230097465
    Abstract: Structures and methods enable emergency or rapid shutdown of an energized no-insulation (NI) superconducting magnet, without damage due to thermal effects of a quench. A resistive bypass wire is coupled between electrical terminals of the magnet coil, and does not pass significant current during normal magnet operation. When rapid shutdown is required, the bypass wire is cooled below its critical temperature, adding a superconducting current path in parallel with the magnet coil. A portion of the coil is then heated above its critical temperature, interrupting current flow through the coil. Hot spots near the coil leads are mitigated through the use of a conductive structure, such as copper cladding, that carries away excess heat due to the quench. This heat may be deposited in a resistive matrix, such as a steel plate, over a duration of seconds and without compromising other magnet design parameters.
    Type: Application
    Filed: March 25, 2021
    Publication date: March 30, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Alexey RADOVINSKY, Krishna Kiran Kumar UPPALAPATI
  • Publication number: 20230101820
    Abstract: Described is a cable comprising a plurality of high temperature superconductor (HTS) components, a plurality of electrically conductive segments extending along a length of the cable, each of the plurality of electrically conductive segments comprising one of the plurality of HTS components, and an electrically insulating material arranged between adjacent ones of the plurality of electrically conductive segments.
    Type: Application
    Filed: March 4, 2021
    Publication date: March 30, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Alexey RADOVINSKY, Charlie SANABRIA, Christopher CRAIGHILL, Krishna Kiran Kumar UPPALAPATI, Alexander CREELY, Daniel BRUNNER
  • Publication number: 20230073419
    Abstract: Schemes are described for conductor and coolant placement in stacked-plate superconducting magnets, including arranging coolant channels and conducting channels within the plates on opposing faces. If the two types of channels are aligned with one another across the plate stacks, the plates may be stacked such that the cooling channel in one plate is adjacent to the conducting channel of the neighboring plate. By stacking a number of these plates, therefore, cooling may be supplied to each conducting channel through the cooling channels of each neighboring plate. Moreover, by aligning the two types of channels, the stacks of plates may have improved mechanical strength because mechanical load paths through the entire stack that do not pass through any of the channels may be created. This arrangement of channels may produce a very strong stack of plates that can withstand high Lorentz loads.
    Type: Application
    Filed: March 25, 2021
    Publication date: March 9, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian LABOMBARD, Robert MUMGAARD, William BECK, Jeffrey DOODY
  • Publication number: 20220375630
    Abstract: Techniques are described for delivering a metered flow of tritium gas to a fusion power system at a constant (or substantially constant) flow without feedback control being necessary, and while allowing all (or almost all) of the tritium in a reservoir to be delivered to the system. A constant pressure (isobaric) tritium injection system is described comprising a process chamber, at least part of which is flexible, and a regulating chamber arranged adjacent to the process chamber. Tritium in the process chamber may be pushed out of the injection system by managing the pressure of a regulating gas in the regulating chamber. As the pressure of the regulating gas increases, this causes the process chamber to be compressed due to the flexible portion(s) of the process chamber, thereby increasing the pressure of the tritium gas.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 24, 2022
    Applicant: Commonwealth Fusion Systems LLC
    Inventors: Christopher Chrobak, Kyle Mackenzie Ryan, Walter Shmayda, Heena Mutha
  • Publication number: 20220336130
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion System LLC
    Inventors: Brian LABOMBARD, Robert S. GRANETZ, James IRBY, Rui VIEIRA, William BECK, Daniel BRUNNER, Jeffrey DOODY, Martin GREENWALD, Zachary HARTWIG, Philip MICHAEL, Robert MUMGAARD, Alexey RADOVINSKY, Syun'ichi SHIRAIWA, Brandon N. SORBOM, John WRIGHT, Lihua ZHOU
  • Patent number: 11417464
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: August 16, 2022
    Assignees: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian Labombard, Robert S. Granetz, James Irby, Rui Vieira, William Beck, Daniel Brunner, Jeffrey Doody, Martin Greenwald, Zachary Hartwig, Philip Michael, Robert Mumgaard, Alexey Radovinsky, Syun'ichi Shiraiwa, Brandon N. Sorbom, John Wright, Lihua Zhou
  • Publication number: 20210208217
    Abstract: Described herein is an apparatus for quality control of a superconducting tape including (a) at least two rolls contacting the superconducting tape and being suitable for injecting an electric current into the superconducting tape; (b) at least two measuring contacts contacting the superconducting tape and being suitable for measuring an electric voltage along the superconducting tape; and (c) a cooling section suitable for cooling the superconducting tape below its critical temperature, where the at least two rolls and the at least two measuring contacts are located inside the cooling section, and where the cooling section is suitable for keeping the rolls at a first temperature and the measuring contacts at a second temperature, where the first temperature is lower than the second temperature.
    Type: Application
    Filed: April 17, 2019
    Publication date: July 8, 2021
    Applicant: Commonwealth Fusion Systems LLC
    Inventors: Thomas Braun, Ruslan Karabalaev, Michael Baecker, Roger Woerdenweber