Abstract: A communications cable payout bag includes: a main compartment configured to hold a communications cable package; a shoulder strap attached to the exterior of the bag; a pair of handle straps attached to the exterior of the bag, wherein each handle strap is shorter than the shoulder strap; a cable payout passageway between the main compartment and the exterior of the bag; and a closure mechanism configured to close the main compartment.
Type:
Grant
Filed:
June 15, 2009
Date of Patent:
February 23, 2016
Assignee:
CommScope, Inc. of North Carolina
Inventors:
Eddy Robert Houston, David Lewis Wilson
Abstract: An alignment sleeve for an optical fiber adapter includes features to bring precision alignment between optical fiber cores. The sleeve includes a tubular inner area to accept first and second ferrule ends of first and second connectors. First and second tabs project from first and second ends of the sleeve. The first and second tabs slide into holes in the ferrule holders or barrels of the first and second connectors, so as to provide rotational alignment of the first and second ferrules, which may be presenting multi-core optical fibers. A mid-portion of the sleeve may include geometrical features to enable a snap fit of the sleeve into a housing of the adapter. More than one tab may be employed at the ends of the sleeve, and the tabs may have defined spacing and/or dimensions to enable security keying, only permitting coupling between connectors possessing matching holes in the ferrule barrels.
Abstract: A fiber optic plug, suitable for multi-core fiber (MCF), is structured to hold satellite cores of the MCF in a precise angular positions so as to attain suitable alignment with satellite cores of a mating connector. The plug includes features to permit a ferrule holding the MCF to move longitudinally relative to the connector's housing, so that a spring may control a mating force to an abutting ferrule of a mating connector. The ferrule may be held by ferrule barrel having splines projecting away from an outer peripheral surface. The splines may slide longitudinally within notches of the connector housing or a strength member attached to the connector housing. The notches and splines have a tight tolerance, so that the satellite cores remain in a desired, set angular position.
Abstract: Methods of deploying a new server that will receive a set of services include receiving a request to deploy the new server, automatically selecting a location for the server based on a set of rules, and automatically determining the hardware and configuration changes that are necessary to deploy the server at the selected location and to provide the set of services to the server.
Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.
Abstract: Communications plugs are provided that include a housing that receives the conductors of the communication cable. A printed circuit board is mounted at least partially within the housing. A plurality of plug contacts are on the printed circuit board, and the printed circuit board includes a plurality of conductive paths that electrically connect respective ones of the conductors to respective ones of the plug contacts. First and second of the conductive paths are arranged as a first differential pair of conductive paths that comprise a portion of a first differential transmission line through the communications plug, where the first differential transmission line includes a first transition region where the impedance of the first differential transmission line changes by at least 20% and a second transition region impedance of the first differential transmission line changes by at least 20%.
Abstract: Communications plugs are provided that include a plug housing. A plurality of plug contacts are mounted in a row at least partly within the plug housing. The plug contacts are arranged as differential pairs of plug contacts. Each of the differential pairs of plug contacts has a tip plug contact and a ring plug contact. A first capacitor is provided that is configured to inject crosstalk from a first of the tip plug contacts to a first of the ring plug contacts at a point in time that is after the point in time when a signal transmitted through the first of the tip plug contacts to a contact of a mating jack reaches the contact of the mating jack.
Abstract: A telecommunications patching system includes a patch panel comprising a plurality of connector ports and a plurality of patch cords configured to selectively interconnect pairs of the connector ports. Each patch cord has opposite ends and a respective connector secured to each end that is configured to be removably secured within a connector port. The connectors of a respective patch cord have the same unique identifier associated therewith. A first sensor is located at each connector port and detects when a patch cord connector is inserted within, and removed from, a respective connector port. A second sensor is located at each connector port and reads the identifier of a patch cord connector inserted within a respective connector port. The first and second sensors are in communication with a controller that monitors and logs patch cord interconnections with the connector ports.
Type:
Grant
Filed:
January 30, 2012
Date of Patent:
October 13, 2015
Assignee:
CommScope, Inc. of North Carolina
Inventors:
Michael G. German, Golam M. Choudhury, Daniel W. Macauley, Danny L. Satterthwaite, Peter T. Tucker
Abstract: A connector with at least one multi-core fiber (MCF) and method of attaching the MCF within the connector, includes inserting a first end of a MCF into a ferrule of a connector. Then, rotating the end of the MCF within the ferrule until a first selected satellite core of the MCF is in a first alignment relative to a feature of the connector. The feature may be a mark, indentation or protrusion formed on a ferrule, ferrule holder or connector envelope. Finally, affixing the MCF within the ferrule of the connector. In the case of an array-type connector, first ends of other MCFs may be added to the ferrule and clocked relative to the same feature of the connector. Second ends of one or more MCFs may be clocked relative to a same feature of a second connector.
Abstract: Methods of executing patching connection changes in a patching field are provided in which an electronic work order is received on a display located at the patching field, the electronic work order specifying the patching connection change. A technician may perform the patching connection change. Then, an electronic message may be sent from the patching field indicating that the patching change has been completed.
Type:
Grant
Filed:
December 23, 2013
Date of Patent:
September 1, 2015
Assignee:
CommScope, Inc. of North Carolina
Inventors:
Gregory Pinn, Chin Choi-Feng, G. Mabud Choudhury, Michael G German, Matias Peluffo, George Brooks
Abstract: An optical network unit (ONU) includes an optical interface, a detector producing an output signal based on a characteristic of an optical input received via the optical interface, a radio-frequency (RF) interface, an opto-electrical (O/E) converter in a first path from the optical interface to the RF interface, an electro-optical (E/O) converter in a second path from RF interface to the optical interface and a controller operatively connected to the detector, the controller being configured to adjust an optical output of the ONU based on the characteristic, where the characteristic may be a level of the received signal. Also a method of adjusting an optical output of an ONU based on a characteristic of a received signal.
Abstract: Communications connectors include a plurality of input contacts that are arranged as differential pairs of input contacts, a plurality of first output contacts that are electrically connected to respective ones of the plurality of input contacts, and a first pair of second output contacts that are electrically connected by a pair of conductive paths to one of the differential pairs of input contacts. The first output contacts are configured to physically contact respective ones of a plurality of first contacts of a second communications connector. Moreover, each contact of the first pair of second output contacts is electrically in parallel to a respective one of the first output contacts when the communications connector is mated with the second communications connector.
Type:
Grant
Filed:
January 10, 2013
Date of Patent:
August 18, 2015
Assignee:
CommScope, Inc. of North Carolina
Inventors:
Amid Hashim, Carl Todd Herman, Scott L. Michaelis, Richard A. Schumacher, David L. Heckmann, Hongwei Liang, Wayne D. Larsen
Abstract: RF signal amplifiers are provided that include an RF input port, a switching device having an input that is coupled to the RF input port, a first output and a second output, a first diplexer having an input that is coupled to both the first output of the switching device and the second output of the switching device, and a first RF output port that is coupled to an output of the first diplexer. These amplifiers further include an attenuator that is coupled between the second output of the switching device and the input of the first diplexer.
Abstract: Communications patching system and methods utilizing common-mode channel communications are provided for identifying patch panel ports to which a backbone cable is connected in a communications patching system, for identifying a patch panel port to which a horizontal cable terminating at a telecommunications outlet is connected in a communications patching system, and for identifying the physical location of first and second connectors of a patch cord in a communications patching system having multiple patching zones.
Abstract: Communications connectors include a plurality of “discrete” elements to implement the capacitive and/or inductive components of offending and/or compensatory crosstalk stages. By sub-dividing the crosstalk stages into a plurality of time-delayed discrete elements improved return loss and insertion loss may be achieved for very high frequency signals, without having a substantial impact on the crosstalk performance of the connector.
Abstract: Communications jacks include a housing and a flexible printed circuit board that is at least partly within the housing. Eight input contacts that are mounted on the flexible printed circuit board, with the fourth and fifth input contacts forming a first differential pair, the first and second input contacts forming a second differential pair, the third and sixth input contacts forming a third differential pair, and the seventh and eighth input contacts forming a fourth differential pair. The plug contact regions of the input contacts are arranged in numerical order across a plug aperture of the jack. Eight output contacts are also provided, and the flexible printed circuit board includes conductive paths that electrically connect each input contact to a respective output contact.
Abstract: An optical fiber module includes a plate having a first side, a second side and at least one through opening, a plurality of connection elements at the first side, and a mounting block at the second side that is configured to secure, relative to the plate, at least one second fiber optic connector which has a longitudinal axis, an end, a wide portion and an end portion between the wide portion and the end. The mounting block includes a channel having an enlarged portion configured to receive the wide portion of the at least one second fiber optic connector, and the channel is configured to permit the insertion of the at least one second fiber optic connector in a direction perpendicular to the longitudinal axis while preventing the removal of the at least one second fiber optic connector in any direction parallel to the longitudinal axis.
Abstract: A cable, of the twisted pair or fiber optic type, includes conductors for permitting patch cord tracing between ports. In the case of a twisted pair cable, the conductors may be embedded within, or attached to a surface of, a separator. Alternatively, in the case of a twisted pair cable, the conductors may be embedded within, or attached to a surface of, a jacket. In the case of a fiber optic cable, the conductors may be located amongst strength members. Alternatively, in the case of a fiber optic cable, the conductors may be embedded within, or attached to a surface of, a jacket.
Abstract: A kit for providing intelligence capability to a communications frame includes: a housing having a central portion, pairs of upper members extending from opposite sides of the central portion, and a plurality of fingers extending away from each of the upper members; a rear cover attached to the housing, the cover having a central body, pairs of upper legs extending from opposite sides of the central body, and a plurality of fingers extending away from each of the upper members; and a PCB having a central section, pairs of upper members extending from opposite sides of the central section, and a plurality of fingers extending away from each of the upper members, the PCB being adapted for attachment to the housing and rear cover, with the central section being sandwiched between the central portion and the central body, the PCB upper members being sandwiched between the rear cover upper members and the housing upper members, and the PCB fingers being sandwiched between the rear cover fingers and the housing fin
Abstract: A sliding tray is configured to support one or more optical communications modules and includes a body portion having one or more mounting locations for the one or more optical communications modules, a trough projecting from the body portion and configured to support optical fibers connected to the one or more optical communications modules, and a cover pivotably connected to the tray for selectively covering the trough.