Patents Assigned to CommScope Technology LLC
  • Patent number: 9791625
    Abstract: A multifiber connector comprising a rectangular-shaped ferrule having a plurality of fibers, alignment structure positioned on a front face of the ferrule, the alignment structure being at least one of alignment pins and pin-receiving holes, a housing defining a ferrule opening, the ferrule opening sized and shaped to accommodate disposition of the ferrule therein, wherein when disposed within the ferrule opening the ferrule extends forward from a front face of the housing; the housing having an outer periphery, wherein the outer periphery is defined by at least a top wall, a bottom wall, and first and second side walls, each of the side walls defining a recess having a curved surface, each recess positioned at an intermediate point along the height of the first and second side walls, and a key on the outer periphery of the housing on at least one of the top wall and the bottom wall, the key being offset to one side of a centerline bisecting the connector into first and second side portions, wherein the key p
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: October 17, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Michael Lawrence Gurreri
  • Patent number: 9791655
    Abstract: A fiber optic enclosure assembly is disclosed herein. The assembly includes a fiber optic enclosure defining connection locations, a fiber optic cable extending from the connection locations of the fiber optic enclosure, and a covering defining a first axial end and a second axial end, the covering defining a throughhole extending from the first axial end to the second axial end, the throughhole extending along a central longitudinal axis of the covering, the covering defining a first cavity for receiving the fiber optic enclosure. A port extends from the first cavity to an outer surface of the covering, wherein the fiber optic cable extending from the connection locations can extend from the first cavity to the outer surface of the covering for wrapping around the outer surface of the covering.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: October 17, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Michael J. Schomisch, Dennis Ray Wells, Scott C. Kowalczyk, Mark Hodapp
  • Patent number: 9790051
    Abstract: A conductor spool with a frame is provided with a plurality of first fingers, the first fingers and the frame defining a first spool surface. The frame is provided with an entry slot and an exit slot, a retainer gasket coupled to the frame proximate each of the entry slot and the exit slot. A cover is seated upon the frame, the cover enclosing the first spool surface. The conductor spool may be included in a wire harness and conductor spool assembly, the conductor spool seated upon a conductor lead furcated from a composite cable including at least one optical and at least one electrical conductor.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: October 17, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Nahid Islam
  • Patent number: 9784928
    Abstract: A fiber optic connector holder is sized to fit within an opening for mounting a fiber optic adapter. The fiber optic connector holder is configured to permit a fiber optic connector with a dust cap positioned about a ferrule and a polished end face of an optical fiber held by the ferrule to be inserted within and releasably held by the connector holder. A system for holding fiber optic connectors includes a fiber optic connector holder mounted within an opening in a bulkhead for mounting a fiber optic adapter. The fiber optic connector holder is configured to receive a fiber optic connector with a dust cap mounted about a ferrule and polished end face of an optical fiber held by the ferrule. An optical fiber connector may be held to a bulkhead when the fiber optic connector includes a dust cap mounted about a ferrule and a polished end face of an optical fiber held by the ferrule.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: October 10, 2017
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Trevor D. Smith, Thomas C. Tinucci, Cindy S. Walters, James W. Conroy, Joel B. Douglas, Kathleen M. Barnes, Marlon E. Holmquist
  • Patent number: 9787015
    Abstract: A contact sub-assembly is provided for an electrical connector. The contact sub-assembly includes a printed circuit and an array of mating contacts. Each mating contact includes a terminating end portion and a mating interface. The contact sub-assembly also includes an array of circuit contacts that is discrete from the array of mating contacts. Each circuit contact is engaged with and electrically connected to the printed circuit. Each circuit contact is separably engaged with and electrically connected to the terminating end portion of a corresponding one of the mating contacts such that the array of circuit contacts electrically connects the array of mating contacts to the printed circuit.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: October 10, 2017
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Paul John Pepe, Steven Richard Bopp
  • Patent number: 9784923
    Abstract: A fiber optic adapter block is disclosed. The fiber optic adapter block includes at least three fiber optic adapters provided in a stacked arrangement extending widthwise in a longitudinal direction, wherein every other adapter of the at least three fiber optic adapters is staggered in a front to back direction with respect to an adjacent adapter such that front ends of the every other adapter of the at least three fiber optic adapters are aligned at a first depth and a front end of the adjacent adapter is at a second depth that is different than the first depth.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 10, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Matthew Holmberg
  • Patent number: 9787457
    Abstract: A signal interface unit in a radio system includes an external device interface configured to receive a downlink asynchronous radio carrier signal for a radio frequency carrier from an external device; a clock conversion unit communicatively coupled to the external device interface and configured to re-clock the downlink asynchronous radio carrier signal to a master clock of the radio system from the clock of the external device; and an antenna side interface configured to communicate at least one of the re-clocked downlink asynchronous radio carrier signal and a downlink digitized radio frequency signal based on the re-clocked downlink asynchronous radio carrier signal to an antenna unit.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: October 10, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Dean Zavadsky, Philip M. Wala
  • Patent number: 9787037
    Abstract: An adapter for coupling a coaxial interface to a power conductor and method for interconnection may be provided as a body with a conductor junction dimensioned to couple with the power conductor and a mating surface dimensioned to couple with the coaxial interface. The conductor junction, an outer conductor contacting portion of the mating surface and an inner conductor contacting portion of the mating surface are electrically coupled together by the body.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 10, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Lawrence J Buenz
  • Patent number: 9778422
    Abstract: A fiber optic adapter is disclosed. The fiber optic adapter includes a main body configured to receive a first fiber optic connector through a first end and a second fiber optic connector through a second end for mating with the first fiber optic connector. The adapter includes a ferrule alignment structure located within an axial cavity of the main body, the ferrule alignment structure including a sleeve mount and a ferrule sleeve, the sleeve mount including an axial bore and at least one latching hook extending from a center portion of the sleeve mount toward the first end of the main body and at least one latching hook extending from the center portion toward the second end of the main body, the latching hooks configured to flex for releasably latching the first and second fiber optic connectors to the fiber optic adapter.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: October 3, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Keith Nelson
  • Patent number: 9778424
    Abstract: An adapter block assembly includes an adapter block, a circuit board arrangement, and a cover attached to the adapter block so that the circuit board arrangement is held to the adapter block by the cover. Contact assemblies can be disposed between the adapter block and the circuit board arrangement. The cover can be latched, heat staked, or otherwise secured to the adapter block. Each component of the adapter block assembly can include one or more parts (e.g., multiple adapter blocks, multiple circuit boards, and/or multiple cover pieces).
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: October 3, 2017
    Assignees: COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE CONNECTIVITY UK LIMITED
    Inventors: Thomas Marcouiller, Christopher Charles Taylor, John T. Pfarr, Kristofer Bolster, Oscar Fernando Bran de Leon, Loren J. Mattson
  • Patent number: 9778371
    Abstract: A system and method for determining transmission delay in a communications system. In some embodiments, satellite positioning information having System Frame Number (SFN) information may be received for a mobile device and observed time difference of arrival (OTDOA) measurements may be received for a mobile device. A location of the mobile device may be determined as a function of the received satellite positioning information. A Global Positioning System (GPS) time estimate may be determined as a function of the determined location of the mobile device. Transmission delay between a node serving the mobile device and an antenna serving the mobile device may be determined as a function of the received OTDOA measurements and determined GPS time estimate.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 3, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Ariful Hannan, Khalid W. Al-Mufti, Tariqul Islam
  • Patent number: 9778433
    Abstract: A blade arrangement for use in a bladed chassis system includes a splice module coupled to a blade. The splice module includes a splice region, a storage region, a first enter/exit region at the first side, and a second enter/exit region at the second side. Either of the enter/exit regions can be faced towards a rear of the blade when the splice module is mounted to the blade. The splice allows unterminated optical cables routed to the rear of the blade to be optically spliced to connectorized pigtails that are received at rear ports of optical adapters on the blade.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: October 3, 2017
    Assignees: CommScope Technologies LLC, CommScope Connectivity UK Limited
    Inventors: Ryan Kostecka, Alan Cook, David Thomas
  • Patent number: 9780457
    Abstract: A multiple beam antenna system is described. The system may include a mounting structure, a first wireless access antenna, a second wireless access antenna, and a radio frequency lens. The first and second wireless access antennas may be mounted to the mounting structure. Columns of radiating elements of the first and second wireless access antennas may be aligned with the radio frequency lens. The radio frequency lens may be modular in a longitudinal or radial direction, or in both directions. The radio frequency lens may include a plurality of compartments arranged to form a first cylinder made up of concentric, coaxial cylinders and a plurality of dielectric materials in at least some of the plurality of compartments.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: October 3, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Eddie Ray Bradley, Igor E. Timofeev, Michael F. Bonczyk, William H. Burnett
  • Patent number: 9780431
    Abstract: A transmission line transition that couples RF energy between a coaxial cable and an air dielectric microstrip is provided. In some embodiments, the transition can combine a thin printed circuit board substrate and an insulating surface to form an effective capacitive coupling transition that can couple RF energy from the center conductor of a coaxial cable to an air microstrip. In some embodiments, the transition can include an insulating system affixed to a metallic surface, and the insulating system can secure an airstrip conductor in close proximity to an inner conductor of a coaxial cable to capacitively couple the airstrip conductor to the inner conductor of the coaxial cable. In some embodiments, the transition can employ a metallic body coated with an insulating surface to capacitively couple RF energy from the center conductor of the coaxial cable to the air microstrip.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: October 3, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Michael Francis Bonczyk
  • Patent number: 9780447
    Abstract: Antenna system having an antenna array with multiple sub-arrays, each having one or more antenna elements, is calibrated using a distributed calibration antenna element, such as a leaky coaxial cable, that spans across at least two and possibly all of the sub-arrays. To calibrate the transmit (TX) paths of the sub-arrays, TX calibration test signals are transmitted by the sub-arrays, captured by the distributed calibration element, and processed by a corresponding calibration radio. To calibrate the receive (RX) paths of the sub-arrays, an RX calibration test signal is generated by the calibration radio, transmitted by the distributed calibration element, captured by the sub-arrays, and processed by their corresponding radios. Cross-correlation between the calibration and captured signals is performed to derive the complex gain of each sub-array transmitter and receiver, which provides information for aligning the gain, phase, and delay of the different TX and RX paths of the antenna array.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: October 3, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Gregory A. Maca, Jonathon C. Veihl
  • Patent number: 9772450
    Abstract: A passive optical fiber switch includes: a housing defining a plurality of ports configured to receive fiber optic connectors; a substrate positioned within the housing, the substrate defining a plurality of waveguide paths; and an arm positioned relative to one of the plurality of ports such that the arm moves as a fiber optic connector is positioned in the one port, movement of the arm causing the waveguide paths to shift to break a normal through configuration.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: September 26, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Paul John Pepe, Joseph C. Coffey
  • Patent number: 9772464
    Abstract: A rack includes a first termination block disposed at the first side of the rack. The termination block houses a termination arrangement including a plurality of sliding adapter modules. The adapter modules are configured to slide between a non-extended position and an extended position. The adapter modules move away from the rack when slid to the extended position. The adapter modules have first ports facing towards the top of the rack and second ports facing towards the bottom of the rack. Certain types of racks also have a cable storage arrangement disposed at the front of the rack.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: September 26, 2017
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventor: Timothy Jon Haataja
  • Patent number: 9768522
    Abstract: A method of forming a joint between a coaxial cable and, a coaxial connector includes the steps of: preparing a cable having an inner conductor, a dielectric, a corrugated outer conductor surrounding the dielectric layer, and a jacket such that an end of the inner conductor is exposed, an end of the outer conductor is exposed arid is flattened to form a ring devoid of corrugations, and a portion of the dielectric layer is cored out to form a solder chamber between the inner conductor and the ring of the outer conductor; preparing an assembly comprising a coaxial connector comprising an inner contact, a dielectric spacer, and an outer conductor body having a tail, with a solder preform encircling the tail; inserting the tail and solder preform into the solder chamber; and melting the solder preform to create a joint between the ring and the tail.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: September 19, 2017
    Assignee: CommScope Technologies LLC
    Inventors: Frank A. Harwath, Jeffrey D. Paynter, James P. Fleming, David J. Smentek
  • Patent number: 9766413
    Abstract: A fiber optic connector and cable assembly is disclosed herein. The fiber optic connector and cable assembly includes a cable having at least one optical fiber, a jacket surrounding the optical fiber and at least one strength member for reinforcing the fiber optic cable. The fiber optic connector and cable assembly also includes a fiber optic connector having a main connector body having a distal end and a proximal end. The fiber optic connector also includes a ferrule supporting an end portion of the optical fiber. The ferrule is mounted at the distal end of the main connector body. The fiber optic connector further includes a spring for biasing the ferrule in a distal direction and a spring push for retaining the spring within the main connector body. The spring push is mounted at the proximal end of the main connector body. The spring push includes a main body and a stub that projects proximally outwardly from the main body.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: September 19, 2017
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Steven C. Zimmel, Yu Lu, Patrick J. Nault, Scott C. Kowalczyk, Scott Droege, Brent Campbell, Christopher Stroth
  • Patent number: 9768855
    Abstract: Certain features relate to a remote antenna unit having a multi-stage isolation sub-system for isolating uplink and downlink signal paths. A multi-stage isolation sub-system in the remote antenna unit can include a first stage device that is configured to generate a cancellation signal for canceling unwanted downlink signals received at the uplink antenna. The isolation sub-system can also include a second stage device configured to generate a cancellation signal that attenuates residual noise and intermodulation products generated in the downlink path and received in the uplink path. The multi-stage isolation sub-system can combine the cancellation signals with signals received on the uplink path in order to cancel or attenuate downlink leakage signals and residual noise present on the uplink path.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: September 19, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Keld Knut Lange