Abstract: A transaction card having an opening in a metal card body, a booster antenna in the opening, and a molding material about the booster antenna. A process for manufacturing the transaction card includes forming an opening in a card body, inserting a booster antenna into the opening, and molding a molding material about the booster antenna.
Abstract: A process for manufacturing a transaction card includes forming an opening in a card body of the transaction card; inserting an electronic component into the opening; and disposing a non-conductive material about the electronic component. A transaction card includes a molded electronic component.
Abstract: A process for manufacturing a transaction card includes forming an opening in a card body of the transaction card; inserting an electronic component into the opening; and disposing a non-conductive material about the electronic component. A transaction card includes a molded electronic component.
Abstract: A non-provisioned card having a front side and a back side, and at least one visible surface that is patinated or activated to promote patination.
Abstract: A transaction card is described. The transaction card includes a non-plastic layer, one or more embedded electronics, a fill layer, and one or more additional layers. The non-plastic layer has first and second faces and a thickness therebetween, and at least a first opening in the first face. The one or more embedded electronic components are disposed in or adjacent the first opening. The fill layer is in contact with the embedded electronic components, disposed in portions of the first opening not occupied by the embedded electronics.
Abstract: A process for making a transaction card defined by a plurality of layers is described. The process includes providing a first portion of the card, the first portion comprising a non-plastic layer having first and second faces and a thickness therebetween; forming an opening in the non-plastic layer, the opening defined through the first face; disposing embedded electronics in the opening; providing a second portion of the card; and providing a fill disposed in portions of the opening not occupied by the embedded electronics and attaching the first portion of the card to the second portion of the card.
Abstract: A transaction card having an opening in a metal card body, a booster antenna in the opening, and a molding material about the booster antenna. A process for manufacturing the transaction card includes forming an opening in a card body, inserting a booster antenna into the opening, and molding a molding material about the booster antenna.
Abstract: Cards made in accordance with the invention include a specially treated thin decorative layer attached to a thick core layer of metal or ceramic material, where the thin decorative layer is designed to provide selected color(s) and/or selected texture(s) to a surface of the metal cards. Decorative layers for use in practicing the invention include: (a) an anodized metal layer; or (b) a layer of material derived from plant or animal matter (e.g., wood, leather); or (c) an assortment of aggregate binder material (e.g., cement, mortar, epoxies) mixed with laser reactive materials (e.g., finely divided carbon); or (d) a ceramic layer; and (e) a layer of crystal fabric material. The cards may be dual interface smart cards which can be read in a contactless manner and/or via contacts.
Abstract: A transaction card and a process of making the transaction card are described. The transaction card includes a core having first and second faces, a core thickness therebetween, and an opening, and embedded electronics disposed in the opening.
Abstract: Cards made in accordance with the invention include a decorative layer attached to a core layer, where the decorative layer is designed to provide selected color(s) and/or selected texture(s) to a surface of the metal cards. At least one of the decorative layers is a layer derived from animal matter (e.g. leather). The cards may be dual interface smart cards configured to be read in a contactless manner and/or via contacts.
Abstract: A transaction card having a metal layer, an opening in the metal layer for a transponder chip, and at least one discontinuity extending from an origin on the card periphery to a terminus in the opening. The card has a greater flex resistance than a card having a comparative discontinuity with the terminus and the origin the same distance from a line defined by a first long side of the card periphery in an absence of one or more strengthening features. Strengthening features include a discontinuity wherein one of the terminus or the origin are located relatively closer to the first long side of the card periphery than the other, a plurality of discontinuities wherein fewer than all extend from the card periphery to the opening, a self-supporting, non-metal layer disposed on at least one surface of the card, or one or more ceramic reinforcing tabs surrounding the opening.
Type:
Application
Filed:
August 3, 2020
Publication date:
November 19, 2020
Applicant:
CompoSecure, LLC
Inventors:
Adam Lowe, Michele Logan, Dori Skelding, Syeda Hussain
Abstract: A transaction card comprising a metal layer. A first cut out region in a first surface of said metal layer has a depth less than the thickness of the metal layer, and a first portion of an integrated circuit (IC) module is secured therein. A second cut out region extends from the first cut out region to the second surface of said metal layer and defines a non-RF-impeding volume having a perimeter greater than the perimeter of the first cut out region. One or more additional layers are stacked on the second surface of the metal layer, and a channel extends between one of the stacked layers and the IC module.
Type:
Application
Filed:
July 22, 2020
Publication date:
November 19, 2020
Applicant:
CompoSecure, LLC
Inventors:
John Herslow, Adam Lowe, Luis Dasilva, Brian Nester
Abstract: A transaction card includes a monolithic ceramic card body having one or more pockets, and at least one of a magnetic stripe, a barcode, and a laser signature portion. The one or more pockets may be configured to receive at least one of the magnetic stripe, the barcode, a contact chip module, a contactless chip module, a dual interface chip module, a booster antenna, a hologram or commercial indicia. A transaction card may also include a substrate layer having a first side and a second side. A first ceramic layer is connected to the first side of the substrate layer.
Abstract: A transaction card having a metal layer, an opening in the metal layer for a transponder chip, and at least one discontinuity extending from an origin on the card periphery to a terminus in the opening. The card has a greater flex resistance than a card having a comparative discontinuity with the terminus and the origin the same distance from a line defined by a first long side of the card periphery in an absence of one or more strengthening features. Strengthening features include a discontinuity wherein one of the terminus or the origin are located relatively closer to the first long side of the card periphery than the other, a plurality of discontinuities wherein fewer than all extend from the card periphery to the opening, a self-supporting, non-metal layer disposed on at least one surface of the card, or one or more ceramic reinforcing tabs surrounding the opening.
Type:
Grant
Filed:
March 22, 2018
Date of Patent:
September 1, 2020
Assignee:
Composecure, LLC
Inventors:
Adam Lowe, Michele Logan, Dori Skelding, Syeda Hussain
Abstract: A smart card having a metal layer, an opening in the metal layer and a dual interface integrated circuit (IC) module and a plug non-RF-impeding material mounted in the opening, with at least one at least one additional layer stacked relative to the plug.
Type:
Grant
Filed:
January 10, 2020
Date of Patent:
August 18, 2020
Assignee:
Composecure, LLC
Inventors:
John Herslow, Adam Lowe, Luis Dasilva, Brian Nester
Abstract: A process for making a card includes the steps of forming a core layer having a first surface and a second surface, disposing an uncured decorative ceramic layer of ceramic particles disposed in a resin binder over the first surface of the core layer, such as by spray coating, and curing the uncured decorative ceramic layer to form a cured decorative ceramic layer. Card products of the process may have a core layer of metal, ceramic, or a combination thereof that form a bulk of the card.
Abstract: Cards made in accordance with the invention include a specially treated thin decorative layer attached to a thick core layer of metal or ceramic material, where the thin decorative layer is designed to provide selected color(s) and/or selected texture(s) to a surface of the metal cards. Decorative layers for use in practicing the invention include: (a) an anodized metal layer; or (b) a layer of material derived from plant or animal matter (e.g., wood, leather); or (c) an assortment of aggregate binder material (e.g., cement, mortar, epoxies) mixed with laser reactive materials (e.g., finely divided carbon); or (d) a ceramic layer; and (e) a layer of crystal fabric material. The cards may be dual interface smart cards which can be read in a contactless manner and/or via contacts.
Abstract: A transaction card having an opening in a metal card body, a booster antenna in the opening, and a molding material about the booster antenna. A process for manufacturing the transaction card includes forming an opening in a card body, inserting a booster antenna into the opening, and molding a molding material about the booster antenna.
Abstract: A transaction card includes at least one metal layer having one or more apertures therein. A light guide is disposed beneath the metal layer. The light guide has a light output and a light input. The light output is positioned to transmit light through at least the one or more apertures of the metal layer.
Abstract: A smart card having a metal layer, an opening in the metal layer and a dual interface integrated circuit (IC) module and a plug non-RF-impeding material mounted in the opening, with at least one at least one additional layer stacked relative to the plug.
Type:
Application
Filed:
January 10, 2020
Publication date:
May 14, 2020
Applicant:
CompoSecure, LLC
Inventors:
John Herslow, Adam Lowe, Luis Dasilva, Brian Nester