Patents Assigned to Computalog U.S.A.
  • Patent number: 6738720
    Abstract: A system for measuring density of material which can be embodied to measuring bulk density of material penetrated by a borehole. The probe component of the system comprises a source of neutron radiation and preferably two gamma ray spectrometers. The neutron source induces gamma radiation with energies up to about 10 MeV within the material being measured. Formation bulk density is determined by combining spectra of the induced gamma radiation with preferably two gamma ray spectrometers at differing axial spacings from the source. The high energy and dispersed nature of the induced gamma radiation yields greater radial depth of investigation than that obtainable with prior art backscatter density systems, which typically use gamma ray sources local to a probe and of energy about 1.3 MeV or less. The system can alternately be embodied to measure other material properties and to measure density of materials not penetrated by a borehole.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: May 18, 2004
    Assignee: Computalog U.S.A.
    Inventors: Richard C. Odom, Robert D. Wilson
  • Patent number: 6639210
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: October 28, 2003
    Assignee: Computalog U.S.A., Inc.
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Patent number: 6495837
    Abstract: An improved fast neutron detector fabricated with alternating layers of hydrogenous, optically transparent, non scintillating material and scintillating material. Fast neutrons interact with the hydrogenous material generating recoil protons. The recoil protons enter the scintillating material resulting in scintillations. The detector is optically coupled to a photomultiplier tube which generates electrical pulses proportional in amplitude to the intensity of the scintillations, and therefore are an indication of the energy of the fast neutrons impinging upon the detector. Alternating layers of materials are dimensioned to optimize total efficiency of the detector, or to optimize the spectroscopy efficiency of the detector. The scintillating material is preferably ZnS, and the hydrogenous material is preferably plastic. The detector is ideally suited for well logging applications and fast neutron monitor applications.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: December 17, 2002
    Assignee: Computalog U.S.A, Inc.
    Inventors: Richard C. Odom, Donald E. Tiller, Robert D. Wilson
  • Patent number: 5907131
    Abstract: An acoustic logging tool having an acoustic transmitter and at least one acoustic receiver longitudinally spaced from the transmitter is lowered into a borehole fluid within a tubular member having a known resonant frequency. A pulse of acoustic energy is then transmitted into the tubular member, and acoustic energy traversing the tubular member and formation is detected at the acoustic receiver. A frequency domain transformation is performed on the detected acoustic energy and a cement bond evaluation is performed by comparing transformed detected acoustic energy amplitudes within a predetermined range of the resonant frequency of the tubular member, effectively filtering out acoustic energy which traverses the formation surrounding the tubular member.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: May 25, 1999
    Assignee: Computalog U.S.A., Inc.
    Inventor: Lucio N. Tello
  • Patent number: 5728978
    Abstract: An acoustic well logging tool is shown having a transmitter section and a receiver section spaced apart by a semi-rigid housing. The semi-rigid housing includes a number of rigid tubular members which are joined by interlocking lobes which permit relative movement between the tubular members but which prevent the separation thereof. Gaps between the interlocking lobes are filled with a connecting material which differs significantly in acoustic impedance from the material of the remainder of the housing, whereby acoustic energy passing from the transmitter section along the body of the tool is delayed and attenuated.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: March 17, 1998
    Assignee: Computalog U.S.A., Inc.
    Inventors: Edwin K. Roberts, Enrique Elizondo
  • Patent number: 5531112
    Abstract: A production logging tool is provided for use within a well to determine fluid holdup of a multiphase fluid flow within the well. The production logging tool includes a plurality of sensors secured within a plurality of arms which radially extend from a tool housing to points distal from the tool housing. A plurality of sensors are included within the plurality of arms for detecting variations in fluid properties attributable to different flow constituents of the multiphase fluid flow along a path which circumscribes an exterior of the tool housing. The plurality of arms are rotated about the tool housing for moving these sensors through the path in order to ensure that the volumetric proportions of the different flow constituents of the multiphase fluid flow are accurately detected in highly deviated and in horizontal wells.
    Type: Grant
    Filed: May 20, 1994
    Date of Patent: July 2, 1996
    Assignee: Computalog U.S.A., Inc.
    Inventors: Allen R. Young, Jerry L. Davidson, Edward Baltazar
  • Patent number: 5374823
    Abstract: A well logging tool in accordance with the present invention is provided for emitting neutron bursts, and determining inelastic energy spectra and thermal neutron capture cross sections during a single logging pass over a well depth interval. Inelastic energy spectra are determined, in part, by measuring exponential decay rates for thermal neutrons capture events that occur during decay periods which extend for at least several thermal neutron lifetimes following each of the neutron bursts, and by using the measured exponential decay rates to project from thermal neutron capture spectra detected during the decay periods a value for thermal neutron capture components of the total energy spectra detected during neutron burst periods.
    Type: Grant
    Filed: October 28, 1993
    Date of Patent: December 20, 1994
    Assignee: Computalog U.S.A., Inc.
    Inventor: Richard C. Odom