Patents Assigned to Conoco In.
  • Publication number: 20030012711
    Abstract: An apparatus and method is disclosed for producing hydrocarbons according to the Fischer-Tropsch process. The apparatus comprises a catalytic distillation reactor where reactants are fed into the catalytic distillation reactor to undergo catalytic reaction to form hydrocarbons. Physical separation of the unreacted materials and products occurs simultaneously in the catalytic distillation reactor. The catalytic distillation reactor is divided into reaction chambers so as to optimize control of the reaction and the distribution of hydrocarbon products. A monolith, such as a foam monolith or a honeycomb monolith, preferably a honeycomb monolith, is disposed with said reaction chamber serves both as catalyst support and as distillation packing material. A honeycomb monolith preferably includes channels having an axis disposed at a nonzero angle with respect to the axis of a reaction chamber containing the honeycomb monolith.
    Type: Application
    Filed: May 16, 2002
    Publication date: January 16, 2003
    Applicant: Conoco Inc.
    Inventors: Todd H. Harkins, Kenneth M. York, Joe D. Allison, Harold A. Wright
  • Publication number: 20030008929
    Abstract: A method a making a catalyst, preferably a Fischer-Tropsch catalyst, includes the use of a surfactant. The surfactant is preferably a non-ionic surfactant, or alternatively, a cationic surfactant. The catalyst includes support material and catalyst material. The catalyst material preferably includes at least one Fischer-Tropsch metal, more preferably cobalt. The surfactant is preferably added to a solution containing a catalyst material in an amount sufficient to improve a measure of the activity of a catalyst containing the catalyst material, such as the CO conversion, the methane selectivity, the C5+ productivity, or catalyst life. A method for producing hydrocarbons includes contacting a catalyst made as described above with hydrogen and carbon monoxide.
    Type: Application
    Filed: May 31, 2002
    Publication date: January 9, 2003
    Applicant: Conoco Inc.
    Inventor: Joe D. Allison
  • Publication number: 20030005698
    Abstract: A system for vaporizing liquefied natural gas (LNG) utilizes the residual cooling capacity of LNG to condense the working fluid of a power producing work producing cycle and chills liquids that are used in a direct-contact heat transfer system to cool air. The cold air is used to supply air to a combustion gas turbine operating in conjunction with a combined cycle power plant. Power is produced from both the work producing cycle and the combined cycle power plant and the chilling of the intake air to the gas turbine increases the output capacity of the combined cycle power plant.
    Type: Application
    Filed: May 30, 2002
    Publication date: January 9, 2003
    Applicant: Conoco Inc.
    Inventor: Arnold P. Keller
  • Publication number: 20030004817
    Abstract: A medium having a plurality of computer readable files relating to geophysical seismic data recorded thereon. The files include a map display having multiple levels of geographic detail and including a plurality of surface seismic data lines. A plurality of compressed seismic data files is also included, each file producing a corresponding geophysical display when its corresponding surface seismic data line is selected. The files also include a plurality of references to a plurality of full seismic data files. Each of the compressed seismic data files has less information content than its corresponding full seismic data file.
    Type: Application
    Filed: June 27, 2001
    Publication date: January 2, 2003
    Applicant: CONOCO INC
    Inventor: Bobby Joe Caine
  • Publication number: 20030004648
    Abstract: A method of determination of fluid pressures in a subsurface region of the earth uses seismic velocities and calibrations relating the seismic velocities to the effective stress on the subsurface sediments. The seismic velocities may be keyed to defined seismic horizons and may be obtained from many methods, including velocity spectra, post-stack inversion, pre-stack inversion, VSP or tomography. Overburden stresses may be obtained from density logs, relations between density and velocity, or from inversion of potential fields data. The seismic data may be P-P, P-S, or S-S data. The calibrations may be predetermined or may be derived from well information including well logs and well pressure measurements. The calibrations may also include the effect of unloading. The determined pressures may be used in the analysis of fluid flow in reservoirs, basin and prospect modeling and in fault integrity analysis.
    Type: Application
    Filed: August 21, 2002
    Publication date: January 2, 2003
    Applicant: Conoco Inc.
    Inventors: Alan R. Huffman, Robert Lankston, Ernest C. Onyia, Richard Wayne Lahann, David W. Bell
  • Patent number: 6502037
    Abstract: A method for modeling geological structures includes obtaining seismic data and using these data to derive an initial density model. Potential fields data is used to update the initial geophysical model by an inversion process using vector or tensor components of gravity and/or magnetic data. In regions having an anomalous density zone, the initial model includes a topographic or bathymetric surface and a 2D or 3D density model including the top of any zones of anomalous density. Potential fields data is then used to derive the lower boundary of the anomalous density zones by using an inversion process. The final density model from the inversion may be further refined using the seismic data in conjunction with the model obtained by inversion of the potential fields data. The model data are integrated two or three dimensions to determine an overburden stress for the subsurface that includes a proper treatment of the anomalous density zone.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: December 31, 2002
    Assignee: Conoco Inc.
    Inventors: Gregory Joseph Jorgensen, Jerry Lee Kisabeth, Alan Royce Huffman, John B. Sinton, David W. Bell
  • Patent number: 6499540
    Abstract: A method for detecting a leak in a drill string valve used when drilling a subsea well. The method comprises measuring a first inlet pressure at a subsea mudlift pump while a subsea mudlift pump and a surface pump are operating and before a well is fully shut-in and measuring a second inlet pressure at the subsea mudlift pump after the mudlift pump and the surface pump are shut down and after the well is fully shut-in. The first and second subsea mudlift pump inlet pressure measurements are then compared, and a check is performed to determine if the subsea mudlift pump inlet pressure has increased by an amount greater than an estimated annular friction pressure.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: December 31, 2002
    Assignees: Conoco, Inc., The Texas A&M University System
    Inventors: Jerome J. Schubert, Carmon H. Alexander, Hans C. Juvkam-Wold, Curtis E. Weddle, III, Jonggeun Choe
  • Publication number: 20020198096
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Application
    Filed: May 16, 2002
    Publication date: December 26, 2002
    Applicant: Conoco Inc.
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza
  • Publication number: 20020198101
    Abstract: Mixed metal carbide catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their method of making. The preferred catalysts of the invention comprise a mixture of at least two carbided metals that are prepared by the reaction of the metal oxides, alkoxides or nitrates with a hydrocarbon of the formula CnH2n+2 wherein n is an integer from 1 to 4. Optionally, the catalysts include an additional promoter and/or a catalyst support. Preferred catalysts are at least 50 wt % molybdenum, tungsten or chromium, and also contain a second metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, iron, niobium, tantalum, rhenium, cobalt, copper, tin and bismuth.
    Type: Application
    Filed: August 5, 2002
    Publication date: December 26, 2002
    Applicant: Conoco Inc.
    Inventor: Anne M. Gaffney
  • Publication number: 20020198429
    Abstract: A catalyst bed is made of a monolith having a plurality of pores extending through the monolith, the pores forming tortuous flow paths through the monolith. The tortuous flow paths are obtained by modifying the monolith channels with turbulence-inducing objects or means. Catalyst is disposed on the wall surfaces formed by the pores. Reactants are passed through the tortuous flow paths creating turbulent flow thereby increasing the contact of the reactants with the catalyst on the wall surfaces and the mixing across the reactant stream.
    Type: Application
    Filed: May 16, 2002
    Publication date: December 26, 2002
    Applicant: Conoco Inc.
    Inventors: Sriram Ramani, Joe D. Allison, Richard Delgado
  • Patent number: 6488907
    Abstract: A process for the production of synthesis gas from light hydrocarbons such as methane includes the net catalytic partial oxidation of a hydrocarbon feedstock by contacting a feed stream comprising the hydrocarbon feedstock and an O2-containing gas with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream of H2 and CO in a molar ratio of about 2:1. A preferred catalyst used in the process includes at least one catalytically active metal supported on a catalyst support comprising an aluminum-containing, oxide-dispersion-strengthened, alloy that has been treated to provide a protective oxide layer between the support and the catalytically active metal.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: December 3, 2002
    Assignee: Conoco Inc.
    Inventors: John J. Barnes, Hasan Dindi, Juan C. Figueroa, William Manogue
  • Patent number: 6489371
    Abstract: A process is disclosed for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. In accordance with this invention, the catalyst used in the process preferably includes at least cobalt, rhenium, and a promoter selected from the group including boron, phosphorus, potassium, manganese, and vanadium. The catalyst may also comprise a support material selected from the group including silica, titania, titania/alumina, zirconia, alumina, aluminum fluoride, and fluorided aluminas.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: December 3, 2002
    Assignee: Conoco Inc.
    Inventors: Wenchun Chao, Kamel M. Makar, Leo E. Manzer, Munirpallam A. Subramanian
  • Patent number: 6488755
    Abstract: Asphalt compositions as well as asphalt paving compositions are improved by the inclusion of coated mesophase pitch carbon fibers having wax or waxy coatings to such compositions. Uses of such asphalt compositions, particularly with aggregates to form asphalt paving compositions are also disclosed.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: December 3, 2002
    Assignee: Conoco Inc.
    Inventors: Paul E. Seyler, Stephen D. Harris, John Byron Sudbury, Jeff D. Meyers
  • Publication number: 20020176747
    Abstract: The present invention discloses a process for installing a floating platform to the ocean floor using a spoolable (preferably composite) tether, comprising installing the spooled tether onto the floating platform; towing the floating platform to a site for installation; unspooling the tether; connecting a bottom end connector of the tether to a foundation on the ocean floor; and connecting a top end connector of the tether to the floating platform. A preferred floating platform is a tension leg platform, and the invention includes a novel tension leg platform (TLP) comprising a spooled tether installed thereon. In a preferred embodiment the foundation is a suction anchor, and the suction anchor is connected to the bottom end connector prior to unspooling the tether and attached to the ocean floor after unspooling the tether. The floating platform may be uninstalled, moved and re-installed according to the invention.
    Type: Application
    Filed: April 24, 2002
    Publication date: November 28, 2002
    Applicant: Conoco Inc.
    Inventors: Shaddy Y. Hanna, Mamdouh M. Salama
  • Publication number: 20020177741
    Abstract: An apparatus and method is disclosed for producing alcohols, particularly methanol, according to an alcohol synthesis process. The apparatus comprises a catalytic distillation reactor where reactants are fed into the catalytic distillation reactor to undergo catalytic reaction to form methanol. Methanol production beyond the thermodynamic limit is achieved in the apparatus through use of multiple distillation stages, preferably at least three.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 28, 2002
    Applicant: Conoco Inc.
    Inventors: Joe D. Allison, Harold A. Wright, Todd H. Harkins, Doug S. Jack
  • Publication number: 20020177628
    Abstract: A process of preparing a product gas mixture comprising CO and H2 from a light hydrocarbon and O2 mixture is disclosed. The process includes contacting a reactant gas mixture comprising a C1-C5 hydrocarbon and a source of molecular oxygen with a catalytically effective amount of a supported catalyst comprising nickel and rhodium. The catalyst and reactant gas mixture is maintained at catalytic partial oxidation promoting conditions of temperature and pressure during the contacting period, which is preferably 10 milliseconds or less. Certain preferred catalysts comprise an alloy of about 1-50 weight percent nickel and about 0.01-10 weight percent rhodium on a porous refractory support structure.
    Type: Application
    Filed: April 18, 2002
    Publication date: November 28, 2002
    Applicant: Conoco Inc.
    Inventors: Anne M. Gaffney, David R. Corbin
  • Patent number: 6486220
    Abstract: A process is disclosed for regenerating catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration. process comprises contacting a deactivated Fischer-Tropsch catalyst with a steam under regeneration-promoting conditions, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: November 26, 2002
    Assignee: Conoco Inc.
    Inventor: Harold A. Wright
  • Publication number: 20020173555
    Abstract: A process is disclosed for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. In accordance with this invention, the catalyst used in the process includes at least a Fischer-Tropsch metal and boron. The Fischer-Tropsch metal preferably includes cobalt and optionally ruthenium or platinum. The catalyst may also comprise a support material selected from the group including silica, titania, titania/alumina, zirconia, alumina, aluminum fluoride, and fluorided aluminas.
    Type: Application
    Filed: January 14, 2002
    Publication date: November 21, 2002
    Applicant: Conoco Inc.
    Inventors: Olga Ionkina, Wenchun Chao, Munirpallam A. Subramanian, Leo E. Manzer, Kamel M. Makar, Ajoy P. Raje
  • Publication number: 20020172642
    Abstract: Rhodium-spinel catalysts with activity for efficiently catalyzing the net partial oxidation of methane at high selectivities for CO and H2 products are disclosed, along with their method of making. A syngas production process employing such catalysts for the net catalytic partial oxidation of a C1-C5 hydrocarbon (e.g., natural gas or methane) to a product gas mixture comprising CO and H2 is also disclosed. Preferred reaction conditions include maintaining the catalyst at a temperature of about 400-1,200° C., superatmospheric pressure, and flow rate sufficient to pass the reactant gas mixture over the catalyst at space velocities of at least about 100,000-25,000,000 hr−1.
    Type: Application
    Filed: February 19, 2002
    Publication date: November 21, 2002
    Applicant: Conoco Inc.
    Inventors: Hasan Dindi, William Manogue, Norman Herron, Tianyan Niu
  • Patent number: 6474422
    Abstract: A method for controlling a subsea well that includes shutting at least one blowout preventer, opening at least one isolation line, and circulating an influx out of a well while an inlet pressure of a subsea mudlift pump is adjusted to maintain a substantially constant drill pipe pressure at an initial circulating pressure. After the influx is circulated out of the well, drilling mud with a kill mud weight is pumped into the well. The drill pipe pressure is reduced according to a preselected drill pipe pressure decline schedule until the kill mud weight drilling mud reaches the bottom of the well. The drill pipe pressure is then maintained at a final circulating pressure by adjusting the inlet pressure of the subsea mudlift pump. The kill mud weight drilling mud is then circulated from the well bottom to the surface at the final circulating pressure.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: November 5, 2002
    Assignees: Texas A&M University System, Conoco, Inc.
    Inventors: Jerome J. Schubert, Carmon H. Alexander, Hans C. Juvkam-Wold, Curtis E. Weddle, III, Jonggeun Choe