Patents Assigned to Cool Shield, Inc.
  • Patent number: 7462309
    Abstract: A method for making a thermoplastic, thermally-conductive interface article is provided. The method used to make the interface article involves injection-molding a moldable composition into molding members. The moldable composition contains a base thermoplastic elastomer matrix, thermally-conductive filler material, and temperature-activated phase change material. The thermally-conductive articles can be used as thermal interfaces to dissipate heat from heat-generating electronic devices.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: December 9, 2008
    Assignee: Cool Shield, Inc.
    Inventors: James Miller, Kevin A. McCullough, E. Mikhail Sagal, Jeffrey Panek
  • Publication number: 20080296256
    Abstract: A three-dimensional cold plate assembly and method of manufacturing the same is disclosed. The cold plate assembly includes a metallic substrate having a top side and a bottom side and a three-dimensional molded contoured plastic body having a top side and a bottom side. The bottom side of the metallic substrate is bonded to the top side of the plastic body. The bottom side of the plastic body is contoured to substantially complementarily mate with a profile of heat generating components in an electronic device. The method of manufacturing the cold plate includes the steps of pretreating and cleaning the metallic substrate, etching the metallic substrate and overmolding the plastic body onto the bottom side of the metallic substrate to provide a bottom contoured side of the plastic body that substantially complementarily mates with the profile of heat generating components in an electronic device.
    Type: Application
    Filed: August 11, 2008
    Publication date: December 4, 2008
    Applicant: COOL SHIELD INC.
    Inventor: Jeffrey Panek
  • Patent number: 7236344
    Abstract: The apparatus for generating ionic flow of media includes a DC voltage supply having a positive terminal and a negative terminal with a collector connected to the negative terminal of the direct current voltage supply. The collector has a substantially tubular configuration with a rear and front section with inwardly tapering frusto-conical section therebetween. An emitter pin is connected to the positive terminal of the direct current voltage supply with the majority of the tip being located within the frusto-conical section of the collector. Alternatively, the front section of the collector may be made of a dielectric material, such as plastic. As a result, fluid flow, such as air flow, is generated from the input port of the rear section of the collector, through the frusto-conical section of the collector and out the output port of the front section of the collector.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: June 26, 2007
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Publication number: 20060250746
    Abstract: The apparatus for generating ionic flow of media includes a DC voltage supply having a positive terminal and a negative terminal with a collector connected to the negative terminal of the direct current voltage supply. The collector has a substantially tubular configuration with a rear and front section with inwardly tapering frusto-conical section therebetween. An emitter pin is connected to the positive terminal of the direct current voltage supply with the majority of the tip being located within the frusto-conical section of the collector. Alternatively, the front section of the collector may be made of a dielectric material, such as plastic. As a result, fluid flow, such as air flow, is generated from the input port of the rear section of the collector, through the frusto-conical section of the collector and out the output port of the front section of the collector.
    Type: Application
    Filed: May 4, 2006
    Publication date: November 9, 2006
    Applicant: Cool Shield, Inc.
    Inventor: Kevin McCullough
  • Publication number: 20060243316
    Abstract: A thermal transfer device includes a body member having a base material of a first semiconductor material of a first type with a filler material dispersed therein of a second semiconductor material of a second type. Electrodes are attached on sides of the body member and electrical current is run therethrough to create thermal flow using the Peltier effect. The device is formed by injection molding and the like and the filler is introduced into the base by, for example, extrusion or pultrusion processes.
    Type: Application
    Filed: April 26, 2006
    Publication date: November 2, 2006
    Applicant: Cool Shield, Inc.
    Inventor: Kevin McCullough
  • Patent number: 7094822
    Abstract: The present invention relates to thermally conductive, elastomeric pads. The pads can be made by injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: August 22, 2006
    Assignee: Cool Shield, Inc.
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller
  • Patent number: 7038009
    Abstract: The present invention relates to thermally conductive, elastomeric pads and methods for manufacturing such pads. The methods involve injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: May 2, 2006
    Assignee: Cool Shield, Inc.
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller
  • Patent number: 7013555
    Abstract: The present invention discloses a method of providing an integral thermal interface on an interface surface of a heat dissipation device, such as a heat sink. In accordance with the present invention, the phase change material is applied directly onto the interface surface of the heat sink to form an integral interface layer directly on the heat sink during the manufacturing process. This process includes the steps of providing a heat dissipating device having an interface surface, liquefying the phase change material at a controlled temperature so as to decrease the material viscosity to a flowable form, applying the liquefied phase change material directly onto the mating surface of the heat dissipating device either by directly dispensing the material, screen printing or stencil printing and cooling the material causing it to cure on the surface of the heat dissipating device.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: March 21, 2006
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6896045
    Abstract: The present invention discloses a thermal transfer interface having an integrally formed means for fastening and maintaining intimate thermal contact between a heat generating device and a heat-dissipating device. The interface of the present invention includes two components, a compressible thermal transfer component having a first thickness and an adhesive fastening component having a second thickness that is less than the first. The first component, the thermal transfer element, includes a base polymer matrix compound that is loaded with a thermally conducting filler that imparts thermally conductive properties to the net shape moldable material. The polymer base matrix is preferably a highly compressible material such as an elastomer. The second component of the present invention is a pressure sensitive adhesive component. The adhesive is applied adjacent to the thermal transfer element or in an alternating pattern throughout a base field of thermal transfer material.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: May 24, 2005
    Assignee: Cool Shield, Inc.
    Inventor: Jeffrey Panek
  • Patent number: 6828672
    Abstract: A novel visible light curable composition for forming a thermally conductive interface and a method of using the same is provided. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The thermal interface is bonded to the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: December 7, 2004
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6803328
    Abstract: A novel visible light curable composition for forming a thermally conductive interface and a method of using the same is provided. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The thermal interface is bonded to the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: October 12, 2004
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6756005
    Abstract: The present invention relates to a method of manufacturing a thermally conductive article having an integrated thermally conductive surface. The method involves molding a first thermally conductive composition to form a body of the article and then molding a second thermally conductive composition to form an integrated surface on the body of the article. The integrated thermally conductive surface can interface with a heat-generating device (e.g., an electronic part) to dissipate heat from the device. The invention also encompasses thermally conductive articles produced by this method.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: June 29, 2004
    Assignee: Cool Shield, Inc.
    Inventors: Jeffrey Panek, Kevin A. McCullough
  • Patent number: 6651732
    Abstract: A composite heat dissipation assembly having a net shape injection molded thermally conductive elastomeric heat sink and at least one integral heat pipe is provided in the present invention. The molded conformable heat sink is formed from a base elastomeric material that is loaded with thermally conductive filler. The base material is mixed with the filler and net shape molded to form the outer geometry of the assembly. Within the geometry of the part an integral channel is formed that is capable of receiving a heat pipe. The channel is formed to have an opening that is slightly smaller than the outer cross-sectional dimensions of the heat pipe. When the heat pipe is pressed into the channel a portion of the elastomeric material is compressed and the reactionary force of the compressed material firmly presses the elastomer into thermal communication with the outer surface of the heat pipe.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: November 25, 2003
    Assignee: Cool Shield, Inc.
    Inventor: E. Mikhail Sagal
  • Patent number: 6649108
    Abstract: A method of manufacturing a net-shape moldable U-shaped heat sink assembly includes injection molding a thermally conductive polymer composite material. The method includes forming a heat sink assembly base member with a number of integrated fins members thereon. A right upstanding wall extends from a first side of the base member and a left upstanding wall extends from a second side of the base member to form a substantially U-shaped heat sink assembly. To enhance thermal conductivity, fins members may be integrally formed into the base member, right wall and/or left wall during the molding of the heat sink assembly. Also, a flexible metallic substrate or hinges may be embedded within the U-shaped heat sink assembly to permit positioning of the right wall and left wall relative to the base member for custom configuration of the heat sink assembly.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: November 18, 2003
    Assignee: Cool Shield, Inc.
    Inventors: Kevin A. McCullough, E. Mikhail Sagal
  • Patent number: 6635959
    Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: October 21, 2003
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6555486
    Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: April 29, 2003
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6547001
    Abstract: A heat sink assembly for removing heat from an object having an outer surface includes a main body with an object receiving seat. A pair of flexible securing tabs are connected to the free edge of the open end of the main body which emanate into the open end of the main body. A heat dissipation members emanate from the outer surface of the main body to assist in dissipating the heat received by the main body from the heat generating object. The main body, the pair of flexible securing tabs and heat dissipating members are integrally formed with one another of a thermally conductive elastic or elastomeric material. An object to be cooled is inserted into the object receiving seat of the main body and retained in the seat and in communication with the inner surfaces of the main body by the pair of flexible securing tabs.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: April 15, 2003
    Assignee: Cool Shield, Inc.
    Inventors: Kevin A. McCullough, E. Mikhail Sagal, James D. Miller
  • Patent number: 6385047
    Abstract: A net-shape moldable U-shaped heat sink assembly formed by injection molding of a thermally conductive polymer composite material is shown. The heat sink assembly includes a base member with a number of integrated fins members thereon. A right upstanding wall extends from a first side of the base member and a left upstanding wall extends from a second side of the base member to form a substantially U-shaped heat sink assembly. To enhance thermal conductivity, fins members may be integrally formed into the base member, right wall and/or left wall during the molding of the heat sink assembly. Also, a flexible metallic substrate or hinges may be embedded within the U-shaped heat sink assembly to permit positioning of the right wall and left wall relative to the base member for custom configuration of the heat sink assembly.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: May 7, 2002
    Assignee: Cool Shield, Inc.
    Inventors: Kevin A. McCullough, E. Mikhail Sagal