Patents Assigned to Cornell Research Foundation, Inc.
  • Patent number: 10636093
    Abstract: A method and system for valuing structured-finance securities, such as, but not limited to, commercial mortgage-backed securities (CMBS).
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: April 28, 2020
    Assignees: CORNELL RESEARCH FOUNDATION, INC., WOTN, LLC
    Inventors: Andreas D. Christopolous, Robert A. Jarrow, Joshua G. Barratt, Shirish Chinchalkar, Thomas F. Coleman, Abram Connelly, Daniel C. Ilut, Tibor Janosi, Yohan Kim, Yildiray Yildirim, Mark A. Zifchock
  • Patent number: 10612092
    Abstract: A method for assessing risk of losing a transplanted organ by a patient having an episode of acute rejection of the transplanted organ is described. The method includes obtaining from the patient a cell sample from the transplanted organ or peripheral blood, determining a level of FOXP3 in the cell sample, and correlating the level with the risk of loss of the transplanted organ, wherein, compared to a control level, a significantly greater level of FOXP3 in the cell sample from the transplanted organ or a significantly lower level of FOXP3 in the cell sample from the peripheral blood correlates with a decreased risk of loss of the transplanted organ.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: April 7, 2020
    Assignee: Cornell Research Foundation, Inc.
    Inventor: Manikkam Suthanthiran
  • Patent number: 10584182
    Abstract: The invention relates to carrier complexes and methods for delivering molecules to cells. The carrier complexes comprises a molecule and an aromatic cationic peptide in accordance with the invention. In one embodiment, the method for delivering a molecule to a cell comprises contacting the cell with a carrier complex. In another embodiment, the method for delivering a molecule to a cell comprises contacting the cell with a molecule and an aromatic cationic peptide.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: March 10, 2020
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Hazel H. Szeto, Kesheng Zhao, Hugh Robertson, Alex V. Birk
  • Publication number: 20200038472
    Abstract: The invention provides a method of reducing or preventing mitochondrial permeability transitioning. The method comprises administering an effective amount of an aromatic-cationic peptide having at least one net positive charge; a minimum of four amino acids; a maximum of about twenty amino acids; a relationship between the minimum number of net positive charges (pm) and the total number of amino acid residues (r) wherein 3pm is the largest number that is less than or equal to r+1; and a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (pt) wherein 2 a is the largest number that is less than or equal to pt+1, except that when a is 1, pt may also be 1.
    Type: Application
    Filed: September 12, 2019
    Publication date: February 6, 2020
    Applicants: Cornell Research Foundation, Inc., Institut De Recherches Cliniques de Montreal
    Inventors: Hazel H. Szeto, Peter W. Schiller, Kesheng Zhao
  • Patent number: 10550415
    Abstract: The present invention relates to a system for production of ATP. This system is comprised of a support and one or more enzymes coupled to that support which are capable of collectively producing ATP from glucose or fructose metabolism. The present invention is additionally directed to a device, which includes the system, and to a method for carrying out a reaction involving the conversion of ATP to ADP using the system.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: February 4, 2020
    Assignee: Cornell Research Foundation, Inc.
    Inventor: Alexander Travis
  • Patent number: 10485807
    Abstract: The present invention relates to a method of modulating production of neurons and/or oligodendrocytes from neural progenitor cells of human white matter and to a method of treating a subject for a condition modulated by underproduction of oligodendrocytes from human white matter. Both of these methods involve administering an agonist or antagonist of one or more molecules set forth in Tables 1 and/or 2 to the neural progenitor cells. Also disclosed is a method of using an inhibitor of sterol synthesis to differentiate oligodendrocyte progenitor cells to oligodendrocytes.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: November 26, 2019
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Steven A. Goldman, Fraser Sim
  • Publication number: 20190328821
    Abstract: The invention provides a method for reducing oxidative damage in a mammal, a removed organ, or a cell in need thereof. The method comprises administering an effective amount of an aromatic cationic peptide. The aromatic cationic peptide has (a) at least one net positive charge; (b) a minimum of three amino acids; (c) a maximum of about twenty amino acids, (d) a relationship between the minimum number of net positive charges (pm) and the total number of amino acid residues (r) wherein 3 pm is the largest number that is less than or equal to r+1; (e) a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (pt) wherein 3a or 2a is the largest number that is less than or equal to pt+1, except that when a is 1, pt may also be 1; and (f) at least one tyrosine or tryptophan amino acid.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 31, 2019
    Applicant: Cornell Research Foundation, Inc.
    Inventor: Hazel H. Szeto
  • Patent number: 10426600
    Abstract: The present invention relates to a first intraocular lens (120) embodiment having a retainer plate (124) with an annular region surrounding a central opening and an optical lens (122) removably attached to the retainer plate within the central opening. Also disclosed is a second intraocular lens embodiment having a retainer plate with a porous or perforated annular region surrounding a central opening. An optical lens (122) is integral with the retainer plate (124) within the central opening. Methods of implanting these intraocular lens (120) embodiments into a patient's eye are disclosed. Also described here are methods of replacing the first intraocular lens embodiment after it has been implanted in a patient's eye.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: October 1, 2019
    Assignees: University of Houston, Cornell Research Foundation, Inc.
    Inventors: D. Jackson Coleman, Adrian Glasser
  • Patent number: 10406262
    Abstract: The present invention relates to an article fabrication system having a plurality of material deposition tools containing one or more materials useful in fabricating the article, and a material deposition device having a tool interface for receiving one of the material deposition tools. A system controller is operably connected to the material deposition device to control operation of the material deposition device. Also disclosed is a method of fabricating an article using the system of the invention and a method of fabricating a living three-dimensional structure.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 10, 2019
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Lawrence Bonassar, Hod Lipson, Daniel L. Cohen, Evan Malone
  • Patent number: 10301661
    Abstract: The present invention relates to an isolated DNA molecule encoding a fagopyritol synthase. A method for producing a fagopyritol, an insulin mediator, an insulin mediator analog, an insulin mediator homolog, or an insulin mediator inhibitor is also described. The method includes providing a fagopyritol synthase, providing a substrate comprising a galactosyl donor and a galactosyl acceptor, and combining the fagopyritol synthase with the substrate under conditions effective produce a fagopyritol, an insulin mediator, an insulin mediator analog, an insulin mediator homolog, or an insulin mediator inhibitor.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 28, 2019
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Ralph L. Obendorf, Takashi Ueda
  • Patent number: 10258686
    Abstract: The subject invention pertains to isolated influenza virus that is capable of infecting canids and causing respiratory disease in the canid. The subject invention also pertains to compositions and methods for inducing an immune response against an influenza virus of the present invention. The subject invention also pertains to compositions and methods for identifying a virus of the invention and diagnosing infection of an animal with a virus of the invention.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: April 16, 2019
    Assignees: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC., CORNELL RESEARCH FOUNDATION, INC., THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, CENTERS FOR DISEAS CONTROL AND PREVENTION
    Inventors: Patti Cynthia Crawford, Paul J. Gibbs, Edward J. Dubovi, Ruben Omar Donis, Jacqueline Katz, Alexander I. Klimov, Nallakannu P. Lakshmanan, Melissa Anne Lum, Daniel Ghislena Emiel Goovaerts, Mark William Mellencamp, Nancy J. Cox, William L. Castleman
  • Patent number: 10190095
    Abstract: One form of the present invention is directed to a method of remyelinating demyelinated axons by treating the demyelinated axons with oligodendrocyte progenitor cells under conditions which permit remyelination of the axons. Another aspect of the present invention relates to a method of treating a subject having a condition mediated by a loss of myelin or a loss of oligodendrocytes by administering to the subject oligodendrocyte progenitor cells under conditions effective to treat the condition mediated by a loss of myelin or a loss of oligodendrocytes. A further aspect of the present invention relates to an in vitro method of identifying and separating oligodendrocyte progenitor cells from a mixed population containing other mammalian brain or spinal cord cell types.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 29, 2019
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Steven A. Goldman, Neeta Singh Roy, Martha Windrem
  • Patent number: 10131938
    Abstract: The present invention is directed to a method of designing a plurality of capture oligonucleotide probes for use on a support to which complementary oligonucleotide probes will hybridize with little mismatch, where the plural capture oligonucleotide probes have melting temperatures within a narrow range. The present invention further relates to an oligonucleotide array comprising of a support with the plurality of oligonucleotide probes immobilized on the support, a method of using the support to detect single-base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences, and a kit for such detection, which includes the support on which the oligonucleotides have been immobilized.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: November 20, 2018
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Francis Barany, Monib Zirvi, Norman P. Gerry, Reyna Favis, Richard Kliman
  • Publication number: 20180258386
    Abstract: The present invention relates to adenovirus E4ORF1 gene and to endothelial cells engineered to express the E4ORF1 gene. The present invention also relates to uses of the E4ORF1 gene, and cells expressing the E4ORF1 gene, and to compositions comprising the E4ORF1 gene, or comprising cells expressing the E4ORF1 gene.
    Type: Application
    Filed: February 27, 2018
    Publication date: September 13, 2018
    Applicants: Cornell Research Foundation, Inc., Sloan-Kettering Institute for Cancer Research
    Inventors: Shahin RAFII, Fan ZHANG, Marco SEANDEL
  • Patent number: 10034964
    Abstract: The present invention relates to an article fabrication system having a plurality of material deposition tools containing one or more materials useful in fabricating the article, and a material deposition device having a tool interface for receiving one of the material deposition tools. A system controller is operably connected to the material deposition device to control operation of the material deposition device. Also disclosed is a method of fabricating an article using the system of the invention and a method of fabricating a living three-dimensional structure.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: July 31, 2018
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Lawrence Bonassar, Hod Lipson, Daniel L. Cohen, Evan Malone
  • Publication number: 20180186867
    Abstract: The invention relates to three isolated DNA molecules that encode for proteins, BigL1, BigL2 and BigL3, in the Leptospira sp bacterium which have repetitive Bacterial-Ig-like (Big) domains and their use in diagnostic, therapeutic and vaccine applications. According to the present invention, the isolated molecules encoding for BigL1, BigL2 and BigL3 proteins are used for the diagnosis and prevention of infection with Leptospira species that are capable of producing disease in humans and other mammals, including those of veterinary importance.
    Type: Application
    Filed: February 20, 2018
    Publication date: July 5, 2018
    Applicants: U.S. Government represented by the Department of Veterans Affairs, The Regents of the University of California, Cornell Research Foundation, Inc., Fundação Oswaldo Cruz - FIOCRUZ
    Inventors: Albert I. Ko, Mitermayer Galvão Reis, Julio Henrique Rosa Croda, Isadora Cristina Siqueira, David A. Haake, James Matsunaga, Lee W. Riley, Michele Barocchi, Tracy Ann Young
  • Patent number: 9950026
    Abstract: The invention provides a method for reducing oxidative damage in a mammal, a removed organ, or a cell in need thereof. The method comprises administering an effective amount of an aromatic cationic peptide. The aromatic cationic peptide has (a) at least one net positive charge; (b) a minimum of three amino acids; (c) a maximum of about twenty amino acids, (d) a relationship between the minimum number of net positive charges (pm) and the total number of amino acid residues (r) wherein 3 pm is the largest number that is less than or equal to r+1; (e) a relationship between the minimum number of aromatic groups (a) and the total number of net positive charges (pt) wherein 3a or 2a is the largest number that is less than or equal to pt+1, except that when a is 1, pt may also be 1; and (f) at least one tyrosine or tryptophan amino acid.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: April 24, 2018
    Assignee: CORNELL RESEARCH FOUNDATION, INC.
    Inventor: Hazel H. Szeto
  • Patent number: 9944897
    Abstract: The present invention relates to adenovirus E4ORF1 gene and to endothelial cells engineered to express the E4ORF1 gene. The present invention also relates to uses of the E4ORF1 gene, and cells expressing the E4ORF1 gene, and to compositions comprising the E4ORF1 gene, or comprising cells expressing the E4ORF1 gene.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: April 17, 2018
    Assignees: Cornell Research Foundation, Inc., Sloan-Kettering Institute for Cancer Research
    Inventors: Shahin Rafii, Fan Zhang, Marco Seandel
  • Patent number: 9932391
    Abstract: The invention relates to three isolated DNA molecules that encode for proteins, BigL1, BigL2 and BigL3, in the Leptospira sp bacterium which have repetitive Bacterial-Ig-like (Big) domains and their use in diagnostic, therapeutic and vaccine applications. According to the present invention, the isolated molecules encoding for BigL1, BigL2 and BigL3 proteins are used for the diagnosis and prevention of infection with Leptospira species that are capable of producing disease in humans and other mammals, including those of veterinary importance.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: April 3, 2018
    Assignees: Cornell Research Foundation, Inc., The Regents of the University of California, The United States of America represented by the Department of Veterans Affairs, Fundaçäo Oswaldo Cruz—FIOCRUZ
    Inventors: Albert I. Ko, Mitermayer Galvão Reis, Julio Henrique Rosa Croda, Isadora Cristina Siqueira, David A. Haake, James Matsunaga, Lee W. Riley, Michele Barocchi, Tracy Ann Young
  • Patent number: 9926581
    Abstract: The present invention relates to an isolated DNA molecule encoding a fagopyritol synthase. A method for producing a fagopyritol, an insulin mediator, an insulin mediator analog, an insulin mediator homolog, or an insulin mediator inhibitor is also described. The method includes providing a fagopyritol synthase, providing a substrate comprising a galactosyl donor and a galactosyl acceptor, and combining the fagopyritol synthase with the substrate under conditions effective produce a fagopyritol, an insulin mediator, an insulin mediator analog, an insulin mediator homolog, or an insulin mediator inhibitor.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 27, 2018
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Ralph L. Obendorf, Takashi Ueda