Abstract: A multi-layer module that includes a multi-fiber cable storage layer having a cable entry opening and a cable winding structure is disclosed. Also included is a splice storage layer that is discrete from the multi-fiber cable storage layer, the splice storage layer having a splice layer receiving opening in communication with the multi-fiber cable storage layer and a slack storage area. The multi-layer module includes a pigtail storage layer that is discrete from both the multi-fiber cable storage layer and the splice storage layer, the pigtail storage layer having a pigtail connector area and a pigtail storage area, the pigtail storage area comprising a pigtail storage layer receiving opening in communication with the splice storage layer.
Type:
Grant
Filed:
November 30, 2010
Date of Patent:
February 25, 2014
Assignee:
Corning Cable Systems LLC
Inventors:
William J. Giraud, Michael H. Rasmussen, Diana Rodriguez
Abstract: A dust cap assembly for sealing an end face of a fiber optic ferrule includes a sleeve and a sealant. The sleeve is configured to be placed onto the fiber optic ferrule and frictionally engage a medial portion of the fiber optic ferrule. The sealant, which is at least partially disposed on the sleeve, comprises a curable liquid configured to create a removable seal that directly contacts the end face on the fiber optic ferrule when the sleeve is placed onto the fiber optic ferrule. The sealant is also configured adhere to contaminants present on the end face such that upon removal of the sleeve and sealant from the fiber optic ferule remedial cleaning of the end face occurs.
Abstract: A fiber management frame for a fiber optic closure having a removable tray holder configured to mount a fiber optic tray offset from a fiber management interface. The tray holder has optical fibers mounted thereon and can be mounted and/or removed from the fiber management interface without interfering with optical fibers mounted on the fiber management interface. The fiber management interface defines a first slack storage area for a first group of optical fibers. The removable tray holder defines a second slack storage area for a second group of optical fibers offset from the fiber management interface. The fiber optic tray can be mounted to or removed from the fiber management interface without interfering with the first group of optical fibers.
Type:
Application
Filed:
May 30, 2013
Publication date:
February 13, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
Salvador Anguiano, Jason Cameron Payne, Karyne Poissant Prevratil, John Joseph Stillwell
Abstract: Optical fiber-based wireless systems and related components and methods are disclosed. The systems support radio frequency (RF) communications with clients over optical fiber, including Radio-over-Fiber (RoF) communications. The systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility. The communications can be distributed between a head end unit (HEU) that receives carrier signals from one or more service or carrier providers and converts the signals to RoF signals for distribution over optical fibers to end points, which may be remote antenna units (RAUs). A microprocessor-based control system or systems may also be employed.
Type:
Grant
Filed:
July 29, 2011
Date of Patent:
February 11, 2014
Assignee:
Corning Cable Systems LLC
Inventors:
Raymond A. Casterline, Gary L. Coakley, Vladimir M. Cotfas, Eric M. Sadowski, Michael Sauer, Dale A. Webb, Steven C. Kapp, Rajeshkannan Palanisamy, David R. Peters, Michael B. Webb
Abstract: The bond between an armor and a cable covering jacket is controlled by introducing intervening material at the interface of the layers along selected bond regions. The intervening material can comprise particulate matter or a strip of material introduced at selected locations of the armor perimeter to allow ease of access at the selected regions.
Type:
Grant
Filed:
December 11, 2009
Date of Patent:
February 11, 2014
Assignee:
Corning Cable Systems LLC
Inventors:
Julian L. Greenwood, III, Jason C. Lail, Keith H. Lail, Reginald Roberts, Richard S. Wagman
Abstract: Dense shuttered fiber optic connectors and assemblies suitable for establishing optical connections for optical backplanes in equipment racks are disclosed. In one embodiment, a fiber optic connector assembly is provided. The fiber optic connector assembly comprises a fiber optic connector. The fiber optic connector assembly also comprises a slideable shutter disposed in the fiber optic connector. The slideable shutter has an opening(s) configured to be aligned with a plurality of lenses disposed in the fiber optic connector in an open position, and configured to block access to the plurality of lenses disposed in the fiber optic connector in a closed position. The fiber optic connector assembly also comprises an actuation member coupled to the slideable shutter configured to move the slideable shutter from the closed position to the open position.
Type:
Application
Filed:
July 26, 2013
Publication date:
February 6, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
Micah Colen Isenhour, Michael de Jong, Dennis Michael Knecht, James Phillip Luther
Abstract: A breakout cable includes a polymer jacket and a plurality of micromodules enclosed within the jacket. Each micromodule has a plurality of bend resistant optical fibers and a polymer sheath comprising PVC surrounding the bend resistant optical fibers. Each of the plurality of bend resistant optical fibers is a multimode optical fiber including a glass cladding region surrounding and directly adjacent to a glass core region. The core region is a graded-index glass core region, where the refractive index of the core region has a profile having a parabolic or substantially curved shape. The cladding includes a first annular portion having a lesser refractive index relative to a second annular portion of the cladding. The first annular portion is interior to the second annular portion. The cladding is surrounded by a low modulus primary coating and a high modulus secondary coating.
Type:
Application
Filed:
October 10, 2013
Publication date:
February 6, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
Craig Miller Conrad, William Carl Hurley, David Henry Smith
Abstract: Power distribution modules in distributed antenna systems include fan monitoring circuits for indicating an alarm condition to head-end equipment. The alarm condition can be used by system operator/owners that a fan is drawing excessive power, thereby detracting from system performance, or indicating that the fan may fail. The alarm condition signal can be returned to the head-end equipment via an uplink communication path between a remote unit powered by the module and the head-end equipment.
Abstract: Optical backplane extension modules and related assemblies suitable for establishing optical connections to information processing modules disposed in equipment racks are disclosed. In one embodiment, an optical backplane extension module is provided. The optical backplane extension module comprises an extension module housing comprising an interior space defined by a base, a left side disposed on a left end of the base, a right side disposed on a right end of the base opposite the left end, and a rear side disposed on a rear end of the base. A plurality of backplane fiber optic connectors are disposed through the rear side of the extension module housing and accessible through an exterior side of the rear side. The plurality of backplane fiber optic connectors configured to be directly optically connected to a plurality of blade fiber optic connectors disposed in a plurality of information processing modules disposed in a rack module housing.
Type:
Application
Filed:
July 26, 2013
Publication date:
January 30, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
Abstract: Fiber optic assemblies include subunit cables wrapped in binders. The assemblies have small cross sections and low bend radii while maintaining acceptable attenuation losses. SZ stranding of the subunit cables allows ease of access to the individual cables during installation.
Type:
Application
Filed:
September 30, 2013
Publication date:
January 30, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
Louis Alexander Barrett, Gerry Jay Harvey, H. Edward Hudson, Eric Raymond Logan
Abstract: Cables are constructed with discontinuities in the cable jacket that allow the jacket to be torn to provide access to the cable core. The discontinuities can be longitudinally extending strips of material in the cable jacket. The discontinuities allow a section of the cable jacket to be pulled away from a remainder of the jacket using a relatively low peel force.
Type:
Application
Filed:
September 30, 2013
Publication date:
January 30, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
Michael John Gimblet, Julian Latelle Greenwood
Abstract: A switched wireless system is used to increase the range of peer-to-peer communications. The optically-switched fiber optic communication system includes a head-end unit (HEU) having a switch bank. Cables couple the HEU to one or more remote access points in different coverage areas. The switch bank in the HEU provides a link between the remote access points in the different coverage areas such that devices in the different cellular coverage areas communicate with each other. By using the switched communication system, the range and coverage of communication between devices may be extended such that devices in different coverage areas and devices using different communication protocols can communicate.
Type:
Grant
Filed:
August 27, 2012
Date of Patent:
January 28, 2014
Assignee:
Corning Cable Systems LLC
Inventors:
Jacob George, Michael Sauer, Dean M. Thelen
Abstract: Methods of preparing strength member pulling members in fiber optic cable furcations and related components, assemblies, and fiber optic cables are disclosed. To allow fiber optic cables to be pulled without damaging optical fiber(s) disposed therein, a strength member pulling loop is formed from a strength member disposed inside the fiber optic cable. A pulling cord can be disposed in the strength member pulling loop to pull the fiber optic cable. The pulling load applied to the pulling cord is translated to the strength member pulling loop, which is translated to the strength member disposed inside the fiber optic cable. In this manner, when the fiber optic cable is pulled, the pulling load is translated to the strength member disposed inside the fiber optic cable to prevent or avoid damaging the optical fiber(s) disposed inside the fiber optic cable.
Abstract: A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 3 mm?DO?5 mm.
Abstract: Cables are constructed with embedded discontinuities in the cable jacket that allow the jacket to be torn to provide access to the cable core. The discontinuities can be longitudinally extending strips of polymer material coextruded in the cable jacket.
Type:
Application
Filed:
September 10, 2013
Publication date:
January 9, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
George Cornelius Abernathy, David Wesley Chiasson, Randall Dwaine Tuttle
Abstract: Distributed antenna systems in which the distributed antenna systems can be sectorized. Radio bands distributed by the distributed antenna systems are allocated to one or more sectors. The antenna units in the distributed antenna systems are also allocated to one or more sectors. In this manner, only radio frequency (RF) communications signals in the radio band(s) allocated to given sector(s) are distributed the antenna unit allocated to the same sector(s). The bandwidth capacity of the antenna unit is split among the radio band(s) allocated to sector(s) allocated to the antenna unit. The sectorization of the radio band(s) and the antenna units can be configured and/or altered based on capacity needs for given radio bands in antenna coverage areas provide by the antenna units.
Type:
Application
Filed:
September 10, 2013
Publication date:
January 9, 2014
Applicant:
Corning Cable Systems LLC
Inventors:
Igor Berlin, William Patrick Cune, Jason Elliott Greene, Michael Sauer, Gerald Bernhart Schmidt
Abstract: Methods, cleavers, and packagings for cleaving an optical fiber using an abrasive medium are disclosed. In one embodiment, the bladeless cleaver includes a body having a flexible tongue configured to receive an optical fiber. The flexible tongue is further configured to provide an arcuate surface to bend a portion of the optical fiber. The bladeless cleaver in this embodiment also includes a cleaver structure attached to the body that comprises an abrasive medium carrier configured to support an abrasive medium. The abrasive medium carrier is configured to be actuated to place the abrasive medium in contact with the portion of the optical fiber to create a flaw in the portion of the optical fiber.
Type:
Grant
Filed:
February 23, 2010
Date of Patent:
January 7, 2014
Assignee:
Corning Cable Systems LLC
Inventors:
Brandon A. Barnes, Daniel Leyva, Jr., Joshua D. Raker
Abstract: An adapter plate assembly includes an adapter for mating two connectors and an adapter plate. The adapter includes a first end and a second end and a passage therethrough. The adapter further includes an adapter footprint and an adapter flange. The first end has an external threaded portion and the second end has an external threaded portion. The adapter is adapted to receive a ruggedized connector in the first and a multi-fiber connector in the second end. The adapter plate includes an aperture for receiving at least a portion of the adapter, a footprint receiving portion for receiving at least a portion of the adapter footprint, a flange receiving portion for receiving the adapter flange, and an attachment feature. A method of assembling the adapter plate and mounting the adapter plate to a non-standard wall is described.
Type:
Grant
Filed:
April 17, 2012
Date of Patent:
January 7, 2014
Assignee:
Corning Cable Systems LLC
Inventors:
Robert Bruce Elkins, II, Barton Pierce Filipiak, Thomas Theuerkorn
Abstract: A rotary locking apparatus for locking and unlocking a fiber optic equipment tray and related methods are disclosed. The rotary locking apparatus may be a torsional rotary locking apparatus. The torsional rotary locking apparatus includes a rod having at least one protrusion and a torsion spring attached to the rod. The torsion spring may also be attached to a tray mount on the fiber optic equipment tray. The rod can be rotatably actuated such that the at least one protrusion selectively engages or disengages one or more of a plurality of slots in a tray guide to allow the fiber optic equipment tray to move from a closed to an open position. The torsion spring may be configured to lock the fiber optic equipment tray in either the open or the closed position when the at least one protrusion engages one of the plurality of slots in the tray guide.
Type:
Grant
Filed:
December 18, 2009
Date of Patent:
January 7, 2014
Assignee:
Corning Cable Systems LLC
Inventors:
Hubert B. Beamon, Terry L. Cooke, Tory A. Klavuhn
Abstract: A ferrule assembly includes a ferrule comprising a ferrule boot insertion end and a ferrule boot defining an optical fiber channel. The optical fiber channel of the ferrule boot is shaped to receive a plurality of optical fibers therethrough. The ferrule boot includes an outer shell and a heat-activated adhesive liner is positioned within the outer shell channel and coupled to the inner surface of the outer shell. A portion of the outer shell is sized to be at least partially inserted into the ferrule boot insertion end of the ferrule. The outer shell has a thermal melting point that is greater than a thermal melting point of the heat-activated adhesive liner such that the heat-activated adhesive liner melts for adhering the plurality of optical fibers to the outer shell upon receipt of thermal energy.