Patents Assigned to Corning Cable Systems LLC
  • Patent number: 9250410
    Abstract: An optical fiber cable includes a jacket and modules including optical fibers. The jacket has an interior that forms an elongate conduit between proximal and distal ends. The modules extend lengthwise through the conduit without being bound together in a pattern of twisting or wound together in a pattern of stranding. Also, the jacket and modules are sized such that free space is provided within the conduit between the modules and the jacket. The jacket is at least ten meters long, and the orientation, alignment, and size of the modules allow individual modules to slide lengthwise relative to one another through the conduit. Pulling one of the modules from the proximal end of the jacket while holding the other modules fixed at the distal end of the jacket draws the one module further into the jacket on the distal end of the jacket.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: February 2, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Terry L. Cooke, Christopher S. Houser, William C. Hurley, Samuel D. Navé, James M. Wilson
  • Patent number: 9250409
    Abstract: A unitary tray for operably supporting a fiber-optic module is disclosed. The tray includes a guide base and guide rails that define a central channel sized to accommodate the fiber-optic module. The fiber-optic module can be slid into a central module position from the back or the front of the tray, and then locked in the central module position. Opposing unitary side guides with slotted channels can be used to form a drawer that holds one or more of the trays. The drawers can be used to form fiber-optic equipment such as an interconnection unit that supports the modules and that allows for conveniently making multiple optical fiber interconnections.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: February 2, 2016
    Assignee: Corning Cable Systems LLC
    Inventors: Chois Alven Blackwell, Jr., Boyd Grant Brower
  • Patent number: 9239441
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 19, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Stuart R. Melton, Hieu V. Tran, David A. Thompson, Richard S. Wagman, Michael J. Gimblet, Xin Liu
  • Patent number: 9239436
    Abstract: Fiber optic plug connectors having an articulated force structure to inhibit angular ferrule biasing are disclosed. An articulated force structure is provided in the fiber optic plugs to apply a forward force to a ferrule of the fiber optic plug, to dispose the fiber optic plug ferrule in close proximity to an optical interface of the optical receptacle to provide an optical connection therebetween. By the articulating force structure providing an articulating forward force to the fiber optic plug ferrule, the ferrule is able to angularly rotate to inhibit angular biasing applied to the fiber optic plug ferrule as a result of inserting the fiber optic plug into an optical receptacle. The articulating force structure providing an articulating forward force to the fiber optic plug ferrule facilitates alignment of the ferrule with the optical receptacle to preserve optical performance.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 19, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Micah Colen Isenhour, James Phillip Luther
  • Patent number: 9229187
    Abstract: Fiber management structures for fan-out assemblies that are used to furcate a fiber optic cable are disclosed, as are fiber optic assemblies with fiber management structures and related methods. The fiber management structures each include channels extending between opposed first and second ends. A plurality of fan-out tubes are received in the plurality of channels such that the fiber management structure organizes the fan-out tubes, thereby allowing a compact furcation body to be formed even when furcating high fiber count cables.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: January 5, 2016
    Assignee: Corning Cable Systems LLC
    Inventors: Terry Lee Cooke, Paula De la Rosa Moyeda, Christopher Shawn Houser, Norberto Marquez Cayetano, Francisco Luna Pina, Roberto Valderrabano Berrones
  • Patent number: 9229175
    Abstract: Fiber optic assemblies and systems for high-speed data-rate optical transport systems are disclosed that allow for optically interconnecting active assemblies to a trunk cable in a polarization-preserving manner. The fiber optic assembly includes at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and second groups of at least two ports each. The first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule. The fiber optic assembly also has a plurality of optical fibers that connect the first and second ports according to a pairings method that maintains polarity between transmit and receive ports of respective active assemblies. At least one of the first and second groups are optically connected without flipping the fibers.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: January 5, 2016
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, John D. Coleman, Alan W. Ugolini
  • Patent number: 9217839
    Abstract: Disclosed are interposer structures having an optical fiber connection and a related fiber optic ferrule that can form a portion of an optical assembly. The interposer structure is useful for transmitting optical signals to/from an integrated circuit that may be attached to the interposer. Specifically, the interposer structure and the related ferrule of the optical connector provide a passively aligned structure having a matched thermal response to maintain a suitable optical connection between the devices over a range of temperatures.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 22, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Douglas Llewellyn Butler, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, James Scott Sutherland
  • Patent number: 9213161
    Abstract: A fiber optic apparatus including a retainer assembly having at least one retainer configured to toollessly, releasably retain a fiber body and or one or more optical fibers is disclosed. An attachment feature may toollessly, removably attach the retainer assembly to a mounting surface. The at least one retainer is configured to releasably retain the fiber body via mounting bosses on the fiber body. A stacking feature may be configured to removably attach a second retainer assembly to the retainer assembly. The at least one retainer may be configured to releasably retain the one or more optical fibers to strain relief the one of more optical fibers. The mounting surface may be fiber optic equipment. The fiber optic equipment may be a shelf mounted to a chassis in a fiber optic equipment rack.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 15, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Monique Lise Cote, Brent Michael Frazier, William Julius McPhil Giraud, Raymond Glen Jay, Brian Duane Kingsbury, Michael Heath Rasmussen
  • Patent number: 9205610
    Abstract: Head-on laser shaping of optical surfaces on optical fibers, related assemblies and methods are disclosed. By “head-on laser shaping,” a laser beam is directed in a laser beam path collinear or substantially collinear to the longitudinal fiber axis of an end portion of an optical fiber. The end face of the end portion of optical fiber is exposed to the laser beam to laser shape a polished optical surface in the end face of the optical fiber. In this manner, the entire surface area of the end face of the optical fiber can be exposed to the laser beam during laser shaping, making it unnecessary unless desired, to rotate the optical fiber or laser beam during laser processing. The cross section energy distribution of the laser beam can also be controlled to laser shape an optical surface in the end face of the optical fiber of the desired geometry.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: December 8, 2015
    Assignee: Corning Cable Systems LLC
    Inventor: Jeffrey Dean Danley
  • Patent number: 9205609
    Abstract: A method is provided of fabricating an optical fiber having a polished end face, including providing an optical fiber having an axis; positioning and maintaining the axis A of the fiber, at a specific location along the fiber, at a fixed position; and forming a laser processed end face on the individual fiber at said specific location L by irradiating the individual fiber at said location with one or more laser beams while moving the one or more laser beams in a rotational direction around the fiber. The method may be applied to a jacketed fiber and/or a fiber on a reel. Resulting fibers are also disclosed.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 8, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Jeffrey Dean Danley, Kevin Eugene Elliott, Darrin Max Miller
  • Patent number: 9207421
    Abstract: A fiber optic network having a branch cable with a plurality of optical fibers optically coupled to a distribution cable, and first and second optical connection terminals connected in series is disclosed. The first optical connection terminal is adapted to receive a first segment of the branch cable. The first optical connection terminal is configured such that predetermined ones of a first plurality of ports comprise one or more of a first drop port and a first pass-through port. The first drop port is operable for optically coupling a first respective predetermined one of the plurality of optical fibers to a first drop cable. The first pass-through port is operable for optically coupling a second respective predetermined one of the plurality of optical fibers to a second segment of the branch cable extending externally from the first optical connection terminal. The second optical connection terminal is adapted to receive the second segment of the branch cable.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: December 8, 2015
    Assignee: Corning Cable Systems LLC
    Inventor: Mark E. Conner
  • Patent number: 9201201
    Abstract: Fiber trays and fiber optic modules and assemblies using the same are disclosed, wherein optical fibers are secured to a fiber tray that is then secured to a body of the fiber module. The body defines a plurality of lenses that reflect light using a total-internal-reflection surface to direct light to active optical components. The fiber tray is secured to the body such that the plurality of optical fibers may be secured within fiber support features of the body that align ends of the optical fibers to the lenses defined by the body. Optical-electrical connectors employing such two-piece fiber optic modules are also disclosed, as well as methods of processing a plurality of optical fibers using a fiber tray.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 1, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Mathieu Charbonneau-Lefort, Michael de Jong, Dennis Michael Knecht, Craig Alan Strause, Thomas Theuerkorn
  • Patent number: 9201208
    Abstract: Cables jacket are formed by extruding discontinuities in a main cable jacket portion. The discontinuities allow the jacket to be torn to provide access to the cable core. The armor cables have an armor layer with armor access features arranged to work in combination with the discontinuities in the cable jacket to facilitate access to the cable core.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: December 1, 2015
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III
  • Patent number: 9195018
    Abstract: Micromodule subunit cables are constructed to allow for ease of identification between optical fibers in differing groups of optical fibers. In one cable, a first group of fibers is located within a buffer tube core while a second group of fibers is located within the cable jacket, but outside of the core. The fibers in the first and second groups can accordingly use the same color coding sequence without requiring additional indicia such as stripes or binding.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 24, 2015
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Todd Ray Rhyne, Jimmy Ray Spurlin, Jr.
  • Patent number: 9188759
    Abstract: A fiber optic network device for optically coupling a fiber optic distribution cable with a fiber optic drop cables is disclosed. Disposed within the fiber optic network device is a plurality of optical fibers optically coupled to the distribution cable. A plurality of ports opens into the fiber optic network device. Predetermined ones of the plurality of ports are operable for optically coupling respective predetermined ones of the plurality of optical fibers each to at least one drop cable external to the fiber optic network device. At least one of the predetermined ones of the plurality of ports is a pass-through port operable for optically coupling at least one of the respective pre-determined ones of the plurality of optical fibers to the at least one drop cable through another fiber optic network device.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 17, 2015
    Assignee: Corning Cable Systems LLC
    Inventor: Mark E. Conner
  • Patent number: 9188756
    Abstract: A hybrid cable includes a cable jacket, elements stranded within the cable jacket, and armor between the elements and the cable jacket. The armor is configured to provide electro-magnetic interference shielding and grounding as well as crush and impact resistance for the hybrid cable. The elements include electrical-conductor elements and one or more fiber-optic elements. The electrical-conductor elements include a metallic conductor jacketed in a polymer, where the electrical-conductor elements are each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The one or more fiber-optic elements include optical fibers within a polymeric tube. At least six of the elements are stranded side-by-side with one another around a central element, which is one of the electrical-conductor elements or one of the one or more fiber-optic elements.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: November 17, 2015
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: James Arthur Register, III, David Henry Smith
  • Patent number: 9182565
    Abstract: Discrete bands (60) are applied to switchback regions (50) of stranded cable cores (10) to secure the stranded tubes (20) prior to jacketing. The bands (60) obviate the need for complex processes such as the application of binder threads.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 10, 2015
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III, Richard Steven Wagman
  • Patent number: 9182561
    Abstract: An optical communication cable is provided. The optical communications cable includes a cable body having a first end, a second end, an outer surface, an inner surface and a channel defined by the inner surface and extending between the first end and the second end. The optical communications cable includes an optical transmission element located in the channel, and a resistive heating element extending at least a portion of the length of the cable body. The resistive heating element defines an electrically conductive path between first and second ends of the resistive heating element. The first and second ends of the resistive heating element are in electrical communication with an exterior of the optical communication cable and are configured to be coupled to a power source that can deliver current to heat the resistive heating element.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 10, 2015
    Assignee: Corning Cable Systems LLC
    Inventor: Anthony Sebastian Bauco
  • Patent number: 9185674
    Abstract: Distributed antenna systems provide location information for client devices communicating with remote antenna units. The location information can be used to determine the location of the client devices relative to the remote antenna unit(s) with which the client devices are communicating. A location processing unit (LPU) includes a control system configured to receive uplink radio frequency (RF) signals communicated by client devices and determines the signal strengths of the uplink RF signals. The control system also determines which antenna unit is receiving uplink RF signals from the device having the greatest signal strength.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: November 10, 2015
    Assignee: Corning Cable Systems LLC
    Inventor: Michael Sauer
  • Patent number: 9179548
    Abstract: Controlled-impedance out-of-substrate package structures employing electrical devices and related assemblies, components, and methods are disclosed. An out-of-substrate package structure may be used to electrically couple an electrical device to an electrical substrate, for example a printed circuit board. The out-of-substrate package structure may be electrically coupled to the electrical substrate. Ground paths of the out-of-substrate package structure may be arranged proximate to the electrical device and arranged symmetric with respect to at least one geometric plane intersecting the electrical device. In this regard, electric field lines generated by current flowing into the electrical device tend to terminate at the return or ground paths allowing for impedance to be more easily controlled. Accordingly, the out-of-substrate package structure may be impedance matched in a better way with respect to power provided from the electrical substrate enabling faster electrical device speeds.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 3, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Thomas Edmond Flaherty, IV, Gary Richard Trott, Jeevan Kumar Vemagiri