Patents Assigned to Corning Optical Communications LLC
  • Patent number: 10488600
    Abstract: Methods of securing an optical fiber within an optical fiber connector include applying heat to a front-end section of a ferrule through a heating sleeve. The heating sleeve at least partially surrounds the front-end section of the ferrule and heats a bonding agent that resides within the ferrule a securing temperature. The optical fiber is inserted into the optical fiber connector and through the bonding agent. The optical fiber is secured in the ferrule axial bore by the bonding agent when the bonding agent reaches the securing temperature.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: November 26, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: William Edward Lock, Phillip R. MacCormack, Cameron John Tovey, Todd Marshall Wetherill
  • Patent number: 10481335
    Abstract: Dense shuttered fiber optic connectors and assemblies suitable for establishing optical connections for optical backplanes in equipment racks are disclosed. In one embodiment, a fiber optic connector assembly is provided. The fiber optic connector assembly comprises a fiber optic connector. The fiber optic connector assembly also comprises a slideable shutter disposed in the fiber optic connector. The slideable shutter has an opening(s) configured to be aligned with a plurality of lenses disposed in the fiber optic connector in an open position, and configured to block access to the plurality of lenses disposed in the fiber optic connector in a closed position. The fiber optic connector assembly also comprises an actuation member coupled to the slideable shutter configured to move the slideable shutter from the closed position to the open position.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 19, 2019
    Assignee: Corning Optical Communications, LLC
    Inventors: Micah Colen Isenhour, Michael de Jong, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 10473872
    Abstract: A large and small diameter optical fiber carrying cable is provided. The cable includes a cable body including an inner surface defining a channel within the cable body, a first group of optical fibers comprising a plurality of first optical fibers located within the channel and a second group of optical fibers comprising a plurality of second optical fibers located within the channel. The optical core diameter of the first optical fibers is larger than the optical core diameter of the second optical fibers.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 12, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: James Arthur Register, III
  • Patent number: 10473868
    Abstract: Disclosed are optical plug connectors that can be converted from a first mating interface to a second mating interface that is different than the first mating interface. The optical plug connector comprises a plug body, a shroud, a ferrule and a first coupling member for securing the optical plug connector. The shroud comprises a first mating interface configuration that may be removed and replaced with a shroud having a second mating interface configuration.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: November 12, 2019
    Assignee: Corning Optical Communications, LLC
    Inventors: Brandon Duvall Compton, Tory Allen Klavuhn, Hieu Vinh Tran
  • Patent number: 10459160
    Abstract: The glass waveguide assembly includes a substrate with glass optical waveguides formed in the body of the glass substrate without adding or removing any glass from the substrate body. The glass optical waveguides run generally from a front-end section to a back-end section. A protective coating is formed over at least a portion of the top surface of the glass substrate where the glass optical waveguides reside. Optical connectors are formed at or adjacent the back end at corresponding connector regions. Each connector includes an end portion of at least one of the glass optical waveguides. In some configurations, the glass waveguide assembly includes a bend section that facilitates forming an optical interconnection in a photonic system between an optical-electrical printed circuit board and photonic integrated circuit.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: October 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Lars Martin Otfried Brusberg
  • Patent number: 10459184
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Terry Lee Cooke, David Lee Dean, Jr., Harley Joseph Staber, Kevin Lee Strause, Alan William Ugolini
  • Patent number: 10462663
    Abstract: Present systems and methods provide ways to provide access services to connecting wireless devices particularly for (but not limited to) neutral host networks. Steps include executing authentication between a connecting wireless device and a service provider, receiving an address of a remote gateway from the service provider, and providing access service for the wireless device including forwarding data received from the wireless device to the indicated remote gateway address in forwarding wireless device associated data received from the remote gateway address to the wireless device. Other ways are also disclosed.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: October 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Kalle Ahmavaara
  • Patent number: 10451814
    Abstract: A fiber optic connector sub-assembly includes a ferrule having a front end, a rear end, and a ferrule bore extending between the front and rear ends along a longitudinal axis. The fiber optic connector sub-assembly also includes a bonding agent disposed in the ferrule bore and having first and second ends along the longitudinal axis. The bonding agent has been melted and solidified at the first and second ends.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Adra Smith Baca, Darrin Max Miller, Dennis Craig Morrison
  • Patent number: 10455497
    Abstract: Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption is disclosed. To avoid a remote unit drawing more power than is allowed and risking shutting down all of its communications services, after a remote unit in the WCS is powered-up to start its operations, the remote unit selectively activates its different communications services. The remote unit selectively activates communications services based on the power consumption of the remote unit to avoid the remote unit drawing more power than is allowed. If activating a next communications service would cause the remote unit to draw more power than is allowed, the remote unit discontinues activating additional communications services. In this manner, the already activated communications services in the remote unit can remain operational without risking powering down of the remote unit and discontinuing all of its communications services.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Ron Hagag, Dror Harel
  • Patent number: 10451803
    Abstract: A multimode optical fiber transmission system that employs an optical fiber with at least one modal-conditioning fiber is disclosed. The system includes a single-mode transmitter that generates modulated light having a wavelength between 800 nm and 1600 nm; an optical receiver configured to receive and detect the modulated light; a multimode optical fiber that defines an optical path between the single-mode transmitter and the optical receiver, the multimode optical fiber having a core with a diameter D40 and a refractive index profile configured to optimally transmit light at a nominal wavelength of 850 nm; and at least one modal-conditioning fiber operably disposed in the optical path to perform at least one of modal filtering and modal converting of the optical modulated light.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: October 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Xin Chen, John Douglas Coleman, Donald Kennedy Hall, Ming-Jun Li
  • Patent number: 10451830
    Abstract: At least one group of loose optical fibers is restrained at multiple locations during fabrication of a fiber optic cable assembly using rear and front ferrule boots, thereby avoiding a need for traditional ribbonizing techniques. The group(s) of loose optical fibers are inserted through one or more apertures defined in each of the rear ferrule boot and the front ferrule boot, and inserted through at least one group of bores defined in a ferrule. A rear portion of the ferrule receives at least a portion of the front ferrule boot. A manufacturing fixture including a removable jig may retain a rear ferrule boot and a medial section of the group(s) of loose optical fibers, while the front ferrule boot and a terminal section of the group(s) of loose optical fibers are positioned outside the fixture for further processing. A fiber optic cable assembly including front and rear ferrule boots, as well as methods of fabrication, are further provided.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: October 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Maciej Lukasz Szumacher, Hieu Vinh Tran, Antwan Joco'ques Works
  • Patent number: 10451810
    Abstract: An adapter for electrically connecting a laser diode to a circuit board is disclosed. An example laser diode may form part of an optical communications system in which the laser diode emits optical signals into an optical fiber cable based on electrical signals received from one or more source circuits. The laser diode is electrically connected to the source circuit(s) through a circuit board. A laser diode adapter is provided to facilitate electrically connecting, as well as mechanically coupling, the laser diode to the circuit board. In this regard, the laser diode adapter includes conductive pads for coupling to conductive legs of the laser diode. The laser diode adapter also includes a set of conductive signal pads for coupling to conductive receiving pads which are electrically connected to the conductive pads, thereby electrically connecting the conductive legs of the laser diode to the circuit board.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: October 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Ofer Shalom, Motti Yakobi
  • Patent number: 10454571
    Abstract: Dynamic determination of threshold power level for use in distinguishing between downlink and uplink periods in time-division duplexed (TDD) communications. For example, downlink and uplink periods may be distinguished in TDD communications in a distributed communications system (DCS), such as a distributed antenna system (DAS). Detecting a power level in a TDD communications signal less than the threshold power level is used to identify uplink periods in the TDD communications signal. In this manner, TDD communications circuits involved with transmitting TDD communications signals can synchronize their transmission circuitry to only transmit downlink TDD communications signals in downlink periods and receive uplink TDD communications signals in uplink periods.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: October 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Amit Gutman, Guy Lupescu
  • Patent number: 10448258
    Abstract: In particular, systems and methods according to present principles configure physical eNodeB to have multiple virtual eNodeBs, where each virtual eNodeBs corresponds to a particular PLMN. Thus, each PLMN has its own virtual eNodeB which is hosted on a common shared physical eNodeB.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: October 15, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Kalle Ahmavaara, Hithesh Nama
  • Patent number: 10444456
    Abstract: High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 15, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Terry Lee Cooke, David Lee Dean, Jr., Harley Joseph Staber, Kevin Lee Strause, Alan William Ugolini
  • Patent number: 10447400
    Abstract: A gain level control circuit in a wireless distribution system (WDS) is provided. The digital level control circuit receives a number of first digital communications signals having a number of first digital amplitudes and generates a number of second digital communications signals having a number of second digital amplitudes. When a selected second digital amplitude approaches a full-scale digital amplitude represented by a predefined number of binary bits, the gain level control circuit determines a selected first digital communications signal having a selected first digital amplitude causing the selected second digital amplitude to exceed the full-scale digital amplitude and adjusts the selected first digital amplitude to reduce the selected second digital amplitude to lower than or equal to the full-scale digital amplitude.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 15, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Dror Harel
  • Patent number: 10448205
    Abstract: Distributed antenna systems provide location information for client devices communicating with remote antenna units. The location information can be used to determine the location of the client devices relative to the remote antenna unit(s) with which the client devices are communicating. A location processing unit (LPU) includes a control system configured to receive uplink radio frequency (RF) signals communicated by client devices and determines the signal strengths of the uplink RF signals. The control system also determines which antenna unit is receiving uplink RF signals from the device having the greatest signal strength.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 15, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Michael Sauer
  • Patent number: 10448410
    Abstract: A method is shown for allocating a plurality of channels to a plurality of radio nodes (RNs) in a radio access network (RAN). In accordance with the method, an initial RN is selected from among the plurality of RNs. A first of the plurality of channels is assigned to the initial RN. The first channel is selected such that external interference experienced by the initial RN from sources other than the RAN on the first channel is minimized. A second RN is selected from among the plurality of RNs. A second of the plurality of channels is assigned to the second RN. The second channel is selected such that a metric reflective of an information carrying capacity of the RNs that have already been assigned one of the plurality of channels is maximized. The assigned channels are allocated to the respective RNs to which they have been assigned.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: October 15, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Tsung-Yi Chen, Hithesh Nama, Jaspreet Singh
  • Patent number: 10437003
    Abstract: An optical fiber distribution system is provided. The system includes a distribution cable having a plurality of cable optical fibers. The system includes a plurality of optical fiber tethers each including a tether optical fiber optically coupled to a cable optical fiber. The tethers provide access to and distribute the optical network at positions along the length of the optical fiber. The system is configured to provide access area organization and/or low profiles, such as through staggered tether lengths, tether webbing and/or access area sleeve arrangements.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: October 8, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Joseph Clinton Jensen, Tory Allen Klavuhn, Lars Kristian Nielsen, Benjamin Gray Whitener
  • Patent number: 10436999
    Abstract: Embodiments of the disclosure are directed to a fiber optic apparatus for retrofit fiber optic connectivity. The fiber optic apparatus is configured to reduce the size and footprint of a typical fiber optic cabinet for retrofit deployment within existing copper infrastructure, while allowing a user to provide and manage fiber optic network connections between a network provider and a plurality of subscribers. In an exemplary embodiment, the fiber optic apparatus decreases width by vertically aligning features of the fiber optic apparatus, and decreases depth by angled mounting of splitter parking and horizontal positioning of vertically stacked ribbon-fanout kit (RFK) sets. Further, the fiber optic apparatus includes flexible tubing attached to a detachable strain relief bracket configured for removal the detachable strain relief bracket from the frame and reattachment to the telecommunications cabinet to facilitate flexibility in mounting of the fiber optic apparatus and fiber deployment.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: October 8, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Sandra Irene Amaya Cruz, Arturo Sanchez Garcia, Brent Vaudry Linas, Guadalupe Rodriguez Sanchez, Fabiola Patricia Villanueva Tavares, Adriana Montalvo Urbano