Patents Assigned to Corning
  • Patent number: 10197726
    Abstract: A multimode optical fiber includes a core region in having silica and an outer radius, R. A cladding of the fiber surrounds the core region and includes silica. The core region has a refractive index profile with a radially-dependent alpha. The radially-dependent alpha is given by ?(r)=f(r).
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: February 5, 2019
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Ming-Jun Li
  • Patent number: 10192040
    Abstract: A computer system for providing software over a network includes: a computer system for providing software over a network is provided. The system includes: a control unit configured to reside at a site, the control unit including a control unit identification (ID) that uniquely identifies the control unit to the network; a copy of the software, the software including sets of features; a license generator configured to create a features activation file containing the control unit ID and identifying at least one set of features to be activated by the control unit; a computer configured to download the features activation file to the control unit; and, the control unit configured for activating one of the sets of features according to the features activation file. A method and a computer program product are disclosed.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Eytan Radian, Gila Shmueli
  • Patent number: 10191216
    Abstract: An optical interface device for a photonic integrated system includes a plug and a receptacle. The receptacle is operably arranged on a PIC that supports waveguides. The plug operably supports optical fibers. The receptacle and plug are configured to operably engage to establish optical communication between the optical fibers and the waveguides. A tab on the receptacle is configured to constrain longitudinal motion while allowing for lateral motion of the receptacle to adjust its position relative to the PIC to optimize alignment. The plug can include a spacer sized to fit within a recess defined by the tab to further facilitate alignment. The receptacle and plug can be engaged and disengaged in a manner similar to conventional electrical connectors.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Alan Frank Evans
  • Patent number: 10194299
    Abstract: A wireless distribution system (WDS) is configured for transmitting a downlink signal or for receiving an uplink signal. A computing device configured to serve as a client device to the WDS includes a memory; a multiple applications processor in communication with the memory and configured to execute one or more mobile applications; and a wireless service processor in communication with the multi applications processor for communicating via a corresponding wireless service with the WDS. The multi applications processor is configured to execute an instance of a data service to establish a connection with the WDS for a specified application process utilizing the wireless service to provide at least one datum on the WDS. In the method, an instance of a data service is executed to establish a connection with a WDS for a specified application process utilizing a wireless service to provide at least one datum on the WDS.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Aravind Chamarti, Yuval Zinger
  • Patent number: 10188975
    Abstract: An air filter, including: at least one wall-flow honeycomb particulate filter having at least one coat on at least a portion of the interior surface of the filter, wherein the at least one coat comprises at least one of: a sorbent; a catalyst; or a combination thereof, and the air filter, in-use, retains from filtered air at least one of: a particulate, a volatile organic compound, or a combination thereof. Also disclosed is an interior air purification system including the air filter, and methods of making and using the air filter.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: January 29, 2019
    Assignee: Corning Incorporated
    Inventors: Xiaodong Robert Fu, Wenhuan Hu, Weizheng Yu
  • Patent number: 10191237
    Abstract: A fiber optic cable includes core elements wound in a pattern of stranding, the core elements comprising tubes surrounding optical fibers. The fiber optic cable further includes an binder film surrounding the stranded core elements. The binder film is continuous peripherally around the core elements, forming a continuous closed loop when viewed in cross-section, and continuous lengthwise along a length of the cable that is at least a meter. Further, the binder film is in radial tension and opposes outwardly transverse deflection of the core elements.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Warren Welborn McAlpine, Eric John Mozdy, Joel Laine Parker
  • Patent number: 10189994
    Abstract: A composition and method for making a heat stable, low application temperature Built Up Roofing Asphalt (BURA) is provided. The composition comprises a wax-modified, air rectified asphalt conforming to Type 3 BURA and, in some embodiments, Type 4 BURA specifications.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 29, 2019
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventor: David C. Trumbore
  • Patent number: 10188985
    Abstract: Extruded honeycomb catalyst bodies and methods of manufacturing same. The catalyst body includes a first oxide selected from the group consisting of tungsten oxides, vanadium oxides, and combinations thereof, a second oxide selected from the group consisting of cerium oxides, lanthanum oxides, zirconium oxides, and combinations thereof, and a zeolite.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 29, 2019
    Assignees: Corning Incorporated, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil, Yuming Xie, Hao Cheng, Shudong Wang
  • Patent number: 10191228
    Abstract: Disclosed are optical connectors and methods for making the same. In one embodiment, the optical connector comprises an optical body, one or more first magnetic materials attached to the optical body, a housing, and one or more second magnetic materials attached to the housing. The first magnetic material(s) provide alignment with an optical element of a complimentary receptacle and the optical body may include one or more openings for receiving the first magnetic materials. The second magnetic material(s) attached to the housing provide retention of the optical connector with the complimentary receptacle when mated together. Consequently, the optical connector allows for quick and easy assembly along with a robust structure for a large number of mating/unmating cycles. In other embodiments, the optical devices disclosed may further include one or more electrical contacts for making a hybrid connection or have a TIR surface integrated into a portion of a housing.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Micah Colen Isenhour, Christopher Paul Lewallen, James Phillip Luther
  • Patent number: 10189656
    Abstract: A method of making a laminated shingle is provided. The method includes coating a shingle mat with roofing asphalt to make an asphalt-coated sheet, adhering a reinforcement member to a portion of the asphalt-coated sheet, covering the asphalt-coated sheet, and optionally covering the reinforcement member, with granules to make a granule-covered sheet, dividing the granule-covered sheet into an overlay sheet and an underlay sheet, wherein the overlay sheet has a tab portion normally exposed on a roof and a headlap portion normally covered-up on a roof, the headlap portion having a lower zone adjacent the tab portion and an upper zone adjacent the lower zone, and wherein the reinforcement member is adhered to the lower zone of the headlap portion and laminating the overlay sheet and the underlay sheet to make the laminated shingle.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: January 29, 2019
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: James S. Belt, Bert W. Elliott
  • Publication number: 20190026414
    Abstract: A non-contact method of characterizing the isostatic strength of a ceramic member or article includes capturing a digital image of the ceramic article, and then forming a two-dimensional representation of the ceramic article and the web therein based on the captured digital image. The method also includes performing finite-element analysis on the two-dimensional representation of the ceramic article using a select amount of simulated isostatic pressure to determine a maximum stress value within the two-dimensional representation of the web. The method further includes using the maximum stress value to characterize the isostatic strength of the ceramic article.
    Type: Application
    Filed: January 13, 2017
    Publication date: January 24, 2019
    Applicant: Corning Incorporated
    Inventors: Seth Thomas Nickerson, David John Worthey
  • Patent number: 10187127
    Abstract: Distributed communications systems (DCSs) supporting automated analysis of MIMO communications stream distribution to remote units in a distributed communication system (DCS) to support configuration of interleaved MIMO communications services are disclosed. In this regard, MIMO analysis circuits can be employed to determine the actual routing of MIMO communications signals and locations of the remote units to automatedly determine any MIMO cell bonding between the remote units to determine the configured interleaved MIMO configuration in effect in the DCS. The determined interleaved MIMO configuration of the DCS infrastructure is used to determine other possible interleaved MIMO configurations and their associated performance, along with the associated configurations and changes needed to realize such possible interleaved MIMO configurations.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Research & Development Corporation
    Inventor: Aravind Chamarti
  • Patent number: 10185111
    Abstract: A traceable cable assembly includes a traceable cable having at least one data transmission element, a jacket at least partially surrounding the data transmission element, and first and second tracing optical fibers extending along at least a portion of a length of the traceable cable. The traceable cable assembly also includes a connector provided at each end of the traceable cable. The first and second tracing optical fibers each have a light launch end and a light emission end. The light launch ends of the first and second tracing optical fibers each include a bend. The bend allows for launching of light into the light launch ends without disengaging the first or second connectors from corresponding connector receptacles.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Anthony Sebastian Bauco, Douglas Llewellyn Butler, Ashley Wesley Jones, Jason Clay Lail, Eric Stephan ten Have
  • Patent number: 10187515
    Abstract: A method of providing a telecommunications service using a network interface device (NID) is provided. The method includes connecting a provider line to one or more protector assemblies connected to a ground bar and configured to conduct current surges from the NID to ground. The one or more protector assemblies are electrically connected to an insulation displacement connector (IDC) module. An outgoing jack module wire is connected to the IDC module by inserting the outgoing jack module wire into a wire insertion hole of the IDC module to receive signals from the provider line. The outgoing jack module wire is electrically connected to a jack module outside the NID thereby providing a demarcation point. An incoming jack module wire is electrically connected to the jack module for carrying signals back to the NID.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Robert Alexander Crane, Christian Shane Duran, John Austin Keenum, Rodger Alan Tenholder
  • Patent number: 10184037
    Abstract: Rigid foam insulating products and processes for making such insulation products are disclosed. The foam products are formed from a polymer, a blowing agent, and nano-graphite. The nano-graphite has a size in at least one dimension less than about 100 nm and, in exemplary embodiments may be an intercalated, expanded nano-graphite. In addition, the nano-graphite may include a plurality of nanosheets having a thickness between about 10 to about 100 nanometers. The nano-graphite acts as a process additive to improve the physical properties of the foam product, such as thermal insulation and compressive strength. In addition, the nano-graphite in the foam controls cell morphology and acts as a nucleating agent in the foaming process. Further, the nano-graphite exhibits overall compound effects on foam properties including improved insulating value (increased R-value) for a given thickness and density and improved ultraviolet (UV) stability.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: January 22, 2019
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Raymond Breindel, Roland Loh, Joseph P. Rynd, Yadolah Delaviz, Mark E. Polasky
  • Patent number: 10185084
    Abstract: Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: January 22, 2019
    Assignee: Corning Incorporated
    Inventors: Douglas Llewellyn Butler, Matthew John Dejneka, Daniel Warren Hawtof, Dale Robert Powers, Pushkar Tandon
  • Patent number: 10185094
    Abstract: Disclosed are optical plugs and optical connectors for making optical connections. The optical plugs and optical connectors disclosed have a nosepiece that is easily removed and replaced for allowing access to the optical interface for cleaning and the nosepiece may also protect the optical interface when installed. The nosepiece may be a single component or an assembly as desired. The devices disclosed may be hybrid devices providing both optical and electrical connectivity or they may solely have optical connectivity if desired.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Micah Colen Isenhour, James Phillip Luther, Percil Watkins
  • Patent number: 10185096
    Abstract: Systems and methods of measuring ferrule-core concentricity for an optical fiber held by a ferrule are disclosed. The method includes: generating ferrule distance data by measuring distances to a ferrule outside surface as a function of rotation angle using a distance sensor and rotating either the ferrule or the distance sensor about an axis of rotation that is off-center from the true ferrule axis; aligning the axis of rotation with the fiber core; using the ferrule distance data to determine a position of the true ferrule center relative to the optical fiber core; and measuring the concentricity as the distance between the true center of the ferrule and the optical fiber core.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Sterling Michael Clarke, John Joseph Costello, III, En Hong, Garrett Andrew Piech, Michael Brian Webb, Elvis Alberto Zambrano
  • Patent number: 10187150
    Abstract: Direct communicative coupling of a base station(s) to a remote unit for exchanging communications services with a distributed communications system (DCS) is disclosed. For example, the remote unit may include a remote antenna unit that is provided in a distributed antenna system (DAS) as one type of DCS. In this manner, the remote unit can facilitate distribution of communications services from a base station into the DCS at locations other than at a centralized location in the DCS, such as at a central unit or head-end equipment. Various DCS configurations are possible that include a remote unit supporting the direct communicatively coupling to a base station(s) for distributing communications services in a DCS.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 22, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Gavriel Mizrahi, Parwiz Shekalim
  • Patent number: D839210
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Dayne Wilcox, Lea Kobeli, Marie Noury, Marcelle Van Beusekom