Patents Assigned to Corning
  • Patent number: 10017417
    Abstract: Embodiments of a glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t up to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer, are disclosed. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension in the range from about 80 MPa to about 100 MPa. In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a value at a point between the first surface and the second surface and increases from the value to the second surface. The concentration of the metal oxide may be about 0.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: July 10, 2018
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Sinue Gomez, Guangli Hu, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Patent number: 10017311
    Abstract: A packaging system for honeycomb assemblies, each including a honeycomb body and reinforcing tube held together by an interference fit or axial compression achieved by thermal expansion coefficient differences between the honeycomb body and reinforcing tube. The reinforcing tube then protects the honeycomb body, facilitating a compact and structurally-strong package.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: July 10, 2018
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Thomas Richard Chapman, Pushkar Tandon, Christopher John Warren
  • Patent number: 10020885
    Abstract: Direct communicative coupling of a base station(s) to a remote unit for exchanging communications services with a distributed communications system (DCS) is disclosed. For example, the remote unit may include a remote antenna unit that is provided in a distributed antenna system (DAS) as one type of DCS. In this manner, the remote unit can facilitate distribution of communications services from a base station into the DCS at locations other than at a centralized location in the DCS, such as at a central unit or head-end equipment. Various DCS configurations are possible that include a remote unit supporting the direct communicatively coupling to a base station(s) for distributing communications services in a DCS.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: July 10, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Gavriel Mizrahi, Parwiz Shekalim
  • Patent number: 10011525
    Abstract: Transparent glass-to-glass hermetic seals are formed by providing a low melting temperature sealing glass along a sealing interface between two glass substrates and irradiating the interface with laser radiation. Absorption by the sealing glass and induced transient absorption by the glass substrates along the sealing interface causes localized heating and melting of both the sealing glass layer and the substrate materials, which results in the formation of a glass-to-glass weld. Due to the transient absorption by the substrate material, the sealed region is transparent upon cooling.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada
  • Patent number: 10012853
    Abstract: The present invention relates to a flexible substrate bonding method and, more particularly, to a bonding method for bonding a flexible substrate to a carrier substrate in order to facilitate handling of the flexible substrate. To this end, the present invention provides a flexible substrate bonding method comprising: a substrate preparation step for preparing a carrier substrate and a flexible substrate; and a bonding step for bonding the carrier substrate to the flexible substrate, which rotates by being wound around a rotation roll, while moving the carrier substrate by a transfer unit, wherein the bonding step includes bringing one edge of the flexible substrate into contact with the carrier substrate, and then gradually bonding the flexible substrate to the carrier substrate in a direction from one side to the other side.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: July 3, 2018
    Assignee: Corning Precision Materials Co., Ltd.
    Inventors: Gyung Soo Kang, Bo Kyung Kong, Eun Heui Choi, Young Seon Park, Woo Jin Lee
  • Patent number: 10014945
    Abstract: Embodiments relate to providing simultaneous digital and analog services in optical fiber-based distributed radio frequency (RF) antenna systems (DASs), and related components and methods. A multiplex switch unit associated with a head-end unit of a DAS can be configured to receive a plurality of analog and digital downlink signals from one or more sources, such as a service matrix unit, and to assign each downlink signal to be transmitted to one or more remote units of the DAS. In one example, when two or more downlink signals are assigned to be transmitted to the same remote unit, a wave division multiplexer/demultiplexer associated with the multiplex switch unit can be configured to wave division multiplex the component downlink signals into a combined downlink signal for remote side transmission and to demultiplex received combined uplink signals into their component uplink signals for head-end side transmission.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: July 3, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: William Patrick Cune, Ofer Saban, Isaac Shapira
  • Patent number: 10015879
    Abstract: A high silica content substrate, such as for a device, is provided. The substrate has a high silica content and is thin. The substrate may include a surface with a topography or profile that facilitates bonding with a conductive metal layer, such as a metal layer for a circuit or antenna. The substrate may be flexible, have high temperature resistance, very low CTE, high strength and/or be non-reactive. The substrate may be suitable for use in circuits intended for use in high temperature environments, low temperature environments, reactive environments, or other harsh environments. The substrate may be suitable for high frequency antenna applications.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Daniel Warren Hawtof, Archit Lal, Jen-Chieh Lin, Gary Richard Trott
  • Patent number: 10011094
    Abstract: A modular glass panel comprising a glass structure having at least one thin glass sheet having a thickness ranging from about 0.5 mm to about 2.0 mm, a backing frame positioned adjacent the glass structure and situated along the perimeter of the glass structure, and a polymer layer intermediate the glass structure and backing frame to adhere the glass structure together with the backing frame. The glass structure can further comprise the at least one thin glass sheet and a second glass sheet having a polymer interlayer therebetween. The backing frame generally has a geometric cross-section with a rounded interior edge adjacent the glass structure to prevent breakage of the structure upon loading or impact of an exterior surface of the structure.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Gordon Charles Brown, Thomas Michael Cleary, Joan Deanna Gregorski
  • Patent number: 10012806
    Abstract: The application provides methods of forming a fiber coupling device comprising a substrate, the substrate having a substrate surface and at least one optoelectronic and/or photonic element, and further comprising at least one fiber coupling alignment structure that is optically transmissive. One method comprises a) applying a polymerizable material to the substrate surface, b) selectively polymerizing, using a method of 3D lithography, a region of the polymerizable material so as to convert the region of the polymerizable material into a polymer material, thereby forming at least one fiber coupling alignment structure, and c) cleaning the substrate and the polymer material from remaining non-polymerized polymerizable material, thereby exposing the at least one fiber coupling alignment structure of the fiber coupling device.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 3, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Davide Domenico Fortusini, Andreas Matiss, Martin Spreemann, Eric Stephan ten Have
  • Patent number: 10011511
    Abstract: A glass forming apparatus for processing molten glass is disclosed comprising a delivery vessel for delivery molten glass to a forming body through a delivery conduit, the delivery conduit comprising a first portion have a circular cross-sectional shape, a second portion comprising a circular cross-sectional shape and a third portion comprising a non-circular cross-sectional shape. The delivery conduit further comprises a first transition portion coupling the second portion to the third portion, and a second transition portion coupling the third portion to an inlet of a trough in a forming body. Neither an inside bottom surface of the third portion, nor an inside bottom surface of the second transition portion, is lower than a bottom surface of the forming body trough. A method of processing molten glass is also described.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventor: John Jerry Kersting
  • Patent number: 10014177
    Abstract: Methods for making electronic devices on thin sheets bonded to carriers. A surface modification layer and associated heat treatments, may be provided on a sheet, a carrier, or both, to control both room-temperature van der Waals (and/or hydrogen) bonding and high temperature covalent bonding between the thin sheet and carrier during the electronic device processing. The room-temperature bonding is controlled so as to be sufficient to hold the thin sheet and carrier together during vacuum processing, wet processing, and/or ultrasonic cleaning processing, during the electronic device processing. And at the same time, the high temperature covalent bonding is controlled so as to prevent a permanent bond between the thin sheet and carrier during high temperature processing, during the electronic device processing, as well as maintain a sufficient bond to prevent delamination during high temperature processing.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Dana Craig Bookbinder, Robert George Manley, Prantik Mazumder, Theresa Chang, Jeffrey John Domey, Darwin Gene Enicks, Vasudha Ravichandran, Alan Thomas Stephens, II, John Christopher Thomas
  • Patent number: 10011517
    Abstract: Optical preforms and methods for forming optical preforms are disclosed. According to one embodiment, a method for producing an optical preform includes compressing silica-based glass soot to form a porous optical preform comprising a soot compact. The porous optical preform is heated to a dwell temperature greater than or equal to 100° C. Thereafter, the porous optical preform is humidified at the dwell temperature in a water-containing atmosphere having a dew point greater than or equal to 30° C. to form a humidified porous optical preform. The soot compact portion of the humidified porous optical preform generally comprises greater than or equal to 0.5 wt. % water.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Richard Michael Fiacco, Andrey V Filippov, Pushkar Tandon
  • Patent number: 10011687
    Abstract: The present disclosure relates to compositions comprising: an organosilane having the formula: (R1)(3-n) (R2O)nSiR3O(CH2CH2O)a(C3H6O)b R4 wherein: n is 1 or 2; a?1, b may vary from 0 to 30, with the proviso a?b; R1 is a hydrocarbon group containing 1 to 12 carbon atoms; R2 is hydrogen or an alkyl group containing 1 to 6 carbon atoms; R3 is a divalent hydrocarbon group containing 2 to 12 carbon atoms; and R4 is hydrogen, R1, or an acetyl group; and at least one of a thermoplastic resin, a thermoset resin, and an elastomer. The present organosilane compositions may be useful for treating various surfaces to render them, among other things, more hydrophilic.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: July 3, 2018
    Assignees: Dow Silicones Corporation, Dow Corning Toray Co., Ltd., Dow Corning (China) Holding Co., Ltd
    Inventors: Michael Ferrito, Michal Hrebicik, Scott Miller, Lenin James Petroff, Guodong Robin Shen, Gerald Witucki, Takeshi Yoshizawa
  • Patent number: 10014704
    Abstract: A lithium ion energy and power system including: a housing containing: at least three electrodes including: at least one first electrode including a cathodic faradaic energy storage material; at least one second electrode including an anodic faradaic energy storage material; and at least one third electrode including a cathodic non-faradaic energy storage material, wherein the at least one first, second, and third electrodes are adjacent as defined herein, and the at least one second electrode is electrically isolated from the electrically coupled at least one first electrode and the at least one third electrode; a separator between the electrodes; and a liquid electrolyte between the electrodes. Also disclosed is a method of making and using the disclosed lithium ion energy and power system.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Rahul Suryakant Kadam
  • Patent number: 10014944
    Abstract: Distributed antenna systems supporting digital data signal propagation between remote antenna clusters, and related distributed antenna systems, components and methods are disclosed. The distributed antenna systems facilitate distributing digital data signals to provide digital data services remotely to distributed remote antenna units. The digital data signals may be propagated between remote antenna units within a remote antenna cluster for digital data signals transmitted to wireless client devices in the distributed antenna system and for digital data signals received from wireless client devices in the distributed antenna system. Received digital data signals from wireless client devices can be propagated from remote antenna unit to remote antenna unit in a remote antenna cluster until the digital data signals reach a wired network device for communication over a network.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: July 3, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dan Harris, Michael Sauer
  • Patent number: 10011512
    Abstract: An apparatus for forming laminated sheet glass comprises a first upper pipe and a lower pipe and an adjustment mechanism comprising first and second first-upper-pipe suspension rods supported by a first horizontally extending support member, third and fourth first-upper-pipe suspension rods supported by a second horizontally extending support member the first upper pipe supported, directly or indirectly, by the first, second, third, and fourth first-upper-pipe suspension rods, a first and second lower-pipe suspension rod supported by the first horizontally extending support member and a third and fourth lower-pipe suspension rod and supported by the second horizontally extending support member, lower pipe supported, directly or indirectly, by the first, second, third, and fourth lower-pipe suspension rods, each respective rod suspended so as to be horizontally adjustable and independently vertically adjustable.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: July 3, 2018
    Assignee: Corning Incorporated
    Inventors: Frank Coppola, Gilbert De Angelis, Vladislav Yuryevich Golyatin, John Jerry Kersting, Chris Scott Kogge
  • Patent number: 10009094
    Abstract: A method and system for monitoring and optimizing a network may include configuring a remote antenna unit with a first transceiver for uplinking and downlinking a signal of a cellular service and with a second transceiver for uplinking and downlinking of the signal of at least one of a Bluetooth or Wi-Fi or Zigbee service. Performance data is collected from at least one user equipment configured for connecting to the remote antenna unit. The collected performance data is routed to a performance data collector configured to aggregate the performance data. The aggregated performance data is correlated. The network is optimized based on the correlated performance data.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: June 26, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Adi Malach
  • Patent number: 10007080
    Abstract: A telecommunications closure includes a base, a cover coupled to the base, and a first interior volume defined between the cover and the base. The cover includes a compartment having an opening and defining a second interior volume. The telecommunications closure also includes a flexible telecommunications line having a first end located within the first interior volume and a second end located outside of the first interior volume. The second end of the telecommunications line has a connector for coupling to other telecommunications lines. A portion of the flexible telecommunications line passes through the opening of the compartment. The telecommunications closure also includes at least one sealing member positioned in the second interior volume of the compartment to seal the flexible telecommunications line in the opening.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: June 26, 2018
    Assignee: Corning Research & Development Corporation
    Inventors: Alan Duncan Burkett, Monique Lise Cote, David Kimondo Waruiru
  • Patent number: 10005975
    Abstract: A fuel separation method by which auxiliary fuel is separated from blended gasoline fuel for a flexible fuel vehicle capable of using ethanol-blended gasoline fuel, the method including the following steps (a) and (b): (a) a step in which, when the ethanol concentration is low, the blended gasoline fuel is separated by a polar separating membrane member at a relatively high separation temperature to obtain, at the permeation side of the membrane, a first auxiliary fuel enriched with the aromatic gasoline components and ethanol component, and (b) a step in which, when the ethanol concentration is high, the blended gasoline fuel is separated by a polar separating membrane member at a relatively low second separation temperature to obtain, at the permeation side of the membrane, a second auxiliary fuel enriched with the non-aromatic high-volatile gasoline components.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: June 26, 2018
    Assignees: Toyota Jidosha Kabushiki Kaisha, Exxonmobil Research and Engineering Company, Corning Incorporated
    Inventors: Yoshihiro Iwashita, Takanori Ueda, Randall D. Partridge, Robert Lucchesi, Paul O. Johnson, George L. Kellogg
  • Patent number: D821325
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 26, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Christian Shane Duran, John Austin Keenum, Edward Joseph Reed, Rodger Alan Tenholder, Dayne Wilcox, Lea Kobeli, Marie Noury, Marcelle Van Beusekom