Patents Assigned to Corning
  • Patent number: 11059131
    Abstract: A method for laser processing a substrate stack includes forming a defect in a transparent workpiece of the substrate stack having a black matrix layer. Forming the defect includes directing a portion of a pulsed laser beam into the transparent workpiece. The pulsed laser beam includes a wavelength ?, a spot size wo, and a Rayleigh range ZR that is greater than F D ? ? ? ? w 0 , 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. The pulsed laser beam directed into the transparent workpiece of the substrate stack forms a pulsed laser beam focal line disposed within the transparent workpiece, where a center of the pulsed laser beam focal line is offset from an edge of the black matrix layer by a distance that is about 20% or less of a total thickness of the substrate stack and generates an induced absorption within the transparent workpiece.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Corning Incorporated
    Inventors: Garrett Andrew Piech, Kristopher Allen Wieland
  • Patent number: 11059741
    Abstract: Disclosed herein are graphene coatings characterized by a porous, three-dimensional, spherical structure having a hollow core, along with methods for forming such graphene coatings on glasses, glass-ceramics, ceramics, and crystalline materials. Such coatings can be further coated with organic or inorganic layers and are useful in chemical and electronic applications.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: July 13, 2021
    Assignees: Corning Incorporated, ICFO—THE INSTITUTE OF PHOTONIC SCIENCES, INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS (ICREA)
    Inventors: Connie Li, Xinyuan Liu, Miriam Marchena Martin-Frances, Valerio Pruneri, Wageesha Senaratne, Zhen Song, Kamal Kishore Soni
  • Patent number: 11058127
    Abstract: A process of making a caramel color comprising a) mixing a carbohydrate with an ammonia compound and a sulfite compound and at pH from just greater than about 4.0 to about 6.0; and b) heating of the mixture from step a) in a sealed vessel to a temperature of from about 120° C. to about 137° C. and maintaining a temperature in said range for at least about 2 hours, said time and temperature being sufficient to yield a product having a color level of at least about double strength and a level of 4-MeI of less than about 20 ppm, is provided. Also provided is a process of ramped heating which results in a similar caramel color product.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: July 13, 2021
    Assignee: Corn Products Development, Inc.
    Inventors: Hongxin Jiang, Christopher Lane
  • Patent number: 11054584
    Abstract: A mode coupling connector system that includes a first and second fiber connector each coupled to a coupler housing. The first and second fiber connectors are positioned in first and second receiving cavities of the coupler housing, respectively. The first and second fiber connector each have a ferrule with a fiber receiving hole extending from an outer end to an inner end of the ferrule. The fiber receiving hole of the first and second fiber connector are in axial alignment. The mode coupling connector system further includes a mode coupling plate having a phase mask array of a plurality of phase masks. The mode coupling plate is positioned in a plate receiving hole of the coupler housing between the first and second receiving cavity and at least two phase masks of the phase mask array are circumscribed by the fiber receiving hole of both the first and second fiber connector.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 6, 2021
    Assignee: Corning Research & Development Corporation
    Inventors: Adrian Alejando Juarez Marroquin, Gordon Mueller-Schlomka
  • Patent number: 11052481
    Abstract: A method for processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece such that a portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece, thereby forming a damage line within the transparent workpiece, and the portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength ?, a spot size w0, and a Rayleigh range ZR that is greater than F D ? ? ? w 0 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater. Further, the method for processing the transparent workpiece includes etching the transparent workpiece with an etching vapor to remove at least a portion of the transparent workpiece along the damage line, thereby forming an aperture extending through the at least a portion of the thickness of the transparent workpiece.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: July 6, 2021
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Andreas Simon Gaab, Garrett Andrew Piech, Alranzo Boh Ruffin, Daniel Arthur Sternquist, Michael Brian Webb
  • Patent number: 11053158
    Abstract: An assembly for chopping glass fibers including a cutter wheel having a plurality of radially extending blades and a cot wheel adjacent the cutter wheel. The cot wheel including an inner hub, an elastomeric ring mounted onto the inner hub for rotation therewith; and a retaining device fixably attached to the hub and engaging the elastomeric ring to resist separation of the elastomeric ring from the hub during rotation of the cot wheel.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 6, 2021
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Michael B. Fazio, David D. Melick
  • Patent number: 11054573
    Abstract: The present description provides multimode optical fibers with reduced cladding thickness. The optical fibers include a reduced-diameter glass fiber and/or reduced-thickness coatings. The overall diameter of the optical fibers is less than 210 ?m and examples with diameters less than 160 ?m are presented. Puncture resistant secondary coatings enable thinning of the secondary coating without compromising protection of the glass fiber. The optical fibers are suitable for data center applications and features high modal bandwidth, low attenuation, low microbending sensitivity, and puncture resistance in a compact form factor.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: July 6, 2021
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon
  • Patent number: 11054600
    Abstract: Embodiments of the disclosure are directed to a fiber optic apparatus for retrofit fiber optic connectivity. The fiber optic apparatus is configured to reduce the size and footprint of a typical fiber optic cabinet for retrofit deployment within existing copper infrastructure, while allowing a user to provide and manage fiber optic network connections between a network provider and a plurality of subscribers. In an exemplary embodiment, the fiber optic apparatus decreases width by vertically aligning features of the fiber optic apparatus, and decreases depth by angled mounting of splitter parking and horizontal positioning of vertically stacked ribbon-fanout kit (RFK) sets. Further, the fiber optic apparatus includes flexible tubing attached to a detachable strain relief bracket configured for removal the detachable strain relief bracket from the frame and reattachment to the telecommunications cabinet to facilitate flexibility in mounting of the fiber optic apparatus and fiber deployment.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: July 6, 2021
    Assignee: Corning Optical Communications LLC
    Inventors: Sandra Irene Amaya Cruz, Arturo Sanchez Garcia, Brent Vaudry Linas, Adriana Montalvo Urbano, Guadalupe Rodriguez Sanchez, Fabiola Patricia Villanueva Tavares
  • Patent number: 11053159
    Abstract: An article includes SiO2 from about 40 mol % to about 80 mol %, Al2O3 from about 1 mol % to about 20 mol %, B2O3 from about 3 mol % to about 50 mol %, WO3 plus MoO3 from about 1 mol % to about 18 mol % and at least one of: (i) Au from about 0.001 mol % to about 0.5 mol %, (ii) Ag from about 0.025 mol % to about 1.5 mol %, and (iii) Cu from about 0.03 mol % to about 1 mol %, and R2O from about 0 mol % to about 15 mol %. The R2O is one or more of Li2O, Na2O, K2O, Rb2O and Cs2O. R2O minus Al2O3 ranges from about ?12 mol % to about 3.8 mol %.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: July 6, 2021
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Jesse Kohl, Stephan Lvovich Logunov, Galan Gregory Moore
  • Patent number: 11054574
    Abstract: The methods of singulating an optical waveguide sheet that supports sheet optical waveguides include irradiating the optical waveguide sheet with a focused laser beam comprising ultrafast light pulses to form within the body of the optical waveguide sheet modified regions, which along with unmodified regions, that define a singulation line. The modified regions define modified sections that are spaced apart by the unmodified sections, which reside at locations of the sheet optical waveguides. The optical waveguide sheet is separated along the singulation line to form an optical waveguide substrate with substrate waveguides formed by sections of the sheet optical waveguides. The optical waveguide substrate has an end face with both smooth and rough sections. The substrate waveguides have end surfaces that terminate at the smooth sections, thereby enabling low-loss optical coupling to other optical components.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 6, 2021
    Assignee: Corning Research & Development Corporation
    Inventors: Lars Martin Otfried Brusberg, Davide Domenico Fortusini, Jason Grenier, Sergio Tsuda, Kristopher Allen Wieland
  • Patent number: 11052572
    Abstract: Systems for and methods of forming structural components, such as a spar cap (503), from layers of a fiber reinforced material obtained from rolls of the material are disclosed. The system comprising: a plurality of rolls (514) including a first roll (514a) and a second roll (514b) of the fiber reinforced material (504), the first roll has one or more first lines (530) printed thereon. The first lines indicating where the fiber reinforced material on the first roll is to be separated into a plurality of discrete first pieces (531-1) for forming the structural component (503). The fiber reinforced material on the second roll has one or more second lines (530) printed thereon. The second lines indicating where the fiber reinforced material on the second roll is to be separated into a plurality of discrete second pieces (531-2) for forming the structural component (503). The systems and methods achieve a substantial reduction in the amount of wasted material.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 6, 2021
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Georg Adolphs, Toni Serarols Beltran
  • Patent number: 11046609
    Abstract: A glass-ceramic includes glass and crystalline phases, where the crystalline phase includes non-stoichiometric suboxides of titanium, forming ‘bronze’-type solid state defect structures in which vacancies are occupied with dopant cations.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: June 29, 2021
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Jesse Kohl
  • Patent number: 11048137
    Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: June 29, 2021
    Assignees: View, Inc., Corning Incorporated
    Inventors: Tom Toan-Cong Tran, Brian D. Griedel, Robert T. Rozbicki, Todd William Martin
  • Patent number: 11045975
    Abstract: A honeycomb extrusion die comprising at least some slots (308) each with a divot (312) spaced toward a discharge surface (324) from a feedhole-slot intersection (332) and a wide portion at the discharge surface extending into the die body (358) to the divot (312) to strengthen a peripheral region of a honeycomb extrudate in a reinforcement region, and a bulk nominal section corresponding to a bulk region of the honeycomb body.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: June 29, 2021
    Assignee: Corning Incorporated
    Inventors: John Wilbur Allard, Thomas William Brew, Tushar Gulati, Helmut Roland Letzel, Min Shen
  • Patent number: 11039621
    Abstract: Embodiments of the present invention pertain to antimicrobial glass compositions, glasses and articles. The articles include a glass, which may include a glass phase and a cuprite phase. In other embodiments, the glasses include as plurality of Cu1+ ions, a degradable phase including B2O3, P2O5 and K2O and a durable phase including SiO2. Other embodiments include glasses having a plurality of Cu1+ ions disposed on the surface of the glass and in the glass network and/or the glass matrix. The article may also include a polymer. The glasses and articles disclosed herein exhibit a 2 log reduction or greater in a concentration of at least one of Staphylococcus aureus, Enterobacter aerogenes, Pseudomomas aeruginosa bacteria, Methicillin Resistant Staphylococcus aureus, and E. coli, under the EPA Test Method for Efficacy of Copper Alloy as a Sanitizer testing conditions and under Modified JIS Z 2801 for Bacteria testing conditions.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: June 22, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Gary Stephen Calabrese, Timothy Michael Gross, Dayue Jiang, Jianguo Wang
  • Patent number: 11040907
    Abstract: Compounds, compositions, articles, devices, and methods for the manufacture of light guide plates and back light units including such light guide plates made from glass. In some embodiments, light guide plates (LGPs) are provided that have similar or superior optical properties to light guide plates made from PMMA and that have exceptional mechanical properties such as rigidity, CTE and dimensional stability in high moisture conditions as compared to PMMA light guide plates.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: June 22, 2021
    Assignee: Corning Incorporated
    Inventors: Melissann Marie Ashton-Patton, Adam James Ellison, Ellen Anne King
  • Patent number: 11039619
    Abstract: Embodiments of the present invention pertain to antimicrobial glass compositions, glasses and articles. The articles include a glass, which may include a glass phase and a cuprite phase. In other embodiments, the glasses include as plurality of Cu1+ ions, a degradable phase including B2O3, P2O5 and K2O and a durable phase including SiO2. Other embodiments include glasses having a plurality of Cu1+ ions disposed on the surface of the glass and in the glass network and/or the glass matrix. The article may also include a polymer. The glasses and articles disclosed herein exhibit a 2 log reduction or greater in a concentration of at least one of Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa bacteria, Methicillin Resistant Staphylococcus aureus, and E. coli, under the EPA Test Method for Efficacy of Copper Alloy as a Sanitizer testing conditions and under Modified JIS Z 2801 for Bacteria testing conditions.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: June 22, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Gary Stephen Calabrese, Timothy Michael Gross, Dayue Jiang, Jianguo Wang
  • Patent number: 11039620
    Abstract: Embodiments of the present invention pertain to antimicrobial glass compositions, glasses and articles. The articles include a glass, which may include a glass phase and a cuprite phase. In other embodiments, the glasses include as plurality of Cu1+ ions, a degradable phase including B2O3, P2O5 and K2O and a durable phase including SiO2. Other embodiments include glasses having a plurality of Cu1+ ions disposed on the surface of the glass and in the glass network and/or the glass matrix. The article may also include a polymer. The glasses and articles disclosed herein exhibit a 2 log reduction or greater in a concentration of at least one of Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa bacteria, Methicillin Resistant Staphylococcus aureus, and E. coli, under the EPA Test Method for Efficacy of Copper Alloy as a Sanitizer testing conditions and under Modified JIS Z 2801 for Bacteria testing conditions.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: June 22, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Gary Stephen Calabrese, Timothy Michael Gross, Dayue Jiang, Jianguo Wang
  • Patent number: 11039397
    Abstract: Systems and methods are disclosed that provide a closed loop power control system including adaptively adjusting the desired target SINR over time so as to ultimately achieve a feasible SINR. In one implementation, a method is provided of optimizing uplink closed loop power control in a RAN in which one or more base stations each service a plurality of mobile stations, including: determining a power level for each mobile station for its respective uplink transmissions, including measuring a current achieved SINR for each mobile station; and for each mobile station, adjusting the power level to be sufficiently high to meet desired transmission characteristics but not so high as to cause unnecessary interference with transmissions from other mobile stations, by adjusting a desired target SINR based on factors selected from the following: current and prior achieved SINRs, current and prior interference measurements, and current and prior transmission power control commands.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: June 15, 2021
    Assignee: Corning Optical Communications LLC
    Inventors: Brian Dunn, Hithesh Nama, Srinivas Pinagapany, Jaspreet Singh
  • Patent number: D924173
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: July 6, 2021
    Assignee: Corning Optical Communications LLC
    Inventors: Dayne Wilcox, Lea Kobeli, Marie Noury, Marcelle Van Beusekom