Patents Assigned to Coskata, Inc.
  • Patent number: 8518691
    Abstract: A membrane supported bioreactor arrangement and method for anaerobic conversion of gas into liquid products including membrane modules having hollow fibers, each of the hollow fibers formed from an asymmetric membrane wall having a porous outer layer defining biopores for retaining a porous biolayer about the outer surface of the membrane wall and a less permeable hydration layer around the hollow fiber lumen; a membrane vessel for retaining the membrane modules in a process gas for formation of the biolayer on the outer surface of the hollow fiber wall by interaction of microorganisms with a process gas and for the production of a liquid product, wherein the membrane vessel retains the membrane modules in a common horizontal plane; provides a seal between contents of the membrane tank and ambient atmosphere; and includes a liquid supply conduit for communicating the process liquid with the hollow fiber lumens of the hollow fibers.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: August 27, 2013
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8486359
    Abstract: The processes are utilized to recover ammonium from waste water using CO2 acidified absorption water. The process is particularly suited for utilization of cellular matter and a CO2 rich tail gas from a syngas fermentation process and derives significant benefit from the recovery of ammonium bicarbonate and ammonium carbonate. Ammonia and ammonium are recovered from the treatment of the syngas as an ammonium rich solution, at least a portion of which is recycled to the fermentation zone to aid in the production of liquid products. A carbon dioxide rich gas produced by fermentation is used to capture the ammonia and ammonium, forming the ammonium rich solution.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: July 16, 2013
    Assignee: Coskata, Inc.
    Inventor: Robert Hickey
  • Publication number: 20130137151
    Abstract: Processes are disclosed for the conversion of biomass to oxygenated organic compound using a simplified syngas cleanup operation that is cost effective and protects the fermentation operation. The processes of this invention treat the crude syngas from the gasifier by non-catalytic partial oxidation. The partial oxidation reduces the hydrocarbon content of the syngas such as methane, ethylene and acetylene to provide advantageous gas feeds for anaerobic fermentations to produce oxygenated organic compounds such as ethanol, propanol and butanol. Additionally, the partial oxidation facilitates any additional cleanup of the syngas as may be required for the anaerobic fermentation. Producer gases and partial oxidation processes are also disclosed.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: COSKATA, INC.
    Inventors: RICHARD E. TOBEY, Jianxin Du, Ralph Corley
  • Publication number: 20130078689
    Abstract: Processes and apparatus are disclosed for the low energy, anaerobic bioconversion of hydrogen and carbon monoxide in a gaseous substrate stream to oxygenated organic compounds such as ethanol by contact with microorganisms in a deep, stirred tank fermentation system with high conversion efficiency of both hydrogen and carbon monoxide. Gas feed to the reactor is injected using a motive liquid to form a stable dispersion of microbubbles thereby reducing energy costs, and a portion of the off-gases from the reactor are recycled to (i) achieve a conversion of the total moles of carbon monoxide and hydrogen in the gas substrate to oxygenated organic compound of at least about 80 percent and (ii) attenuate the risk of carbon monoxide inhibition of the microorganism used for the bioconversion.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: COSKATA, INC.
    Inventor: Robert Hickey
  • Publication number: 20130071897
    Abstract: A method of operating a fermentation zone for the production of ethanol from syngas uses a crotonate-like compound to prevent or reverse the effects of butyrogen contamination. The crotonate-like compound works in continuous fermentation processes to reduce or eliminate contamination from butyrate and butanol in the syngas derived ethanol product.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: COSKATA, INC.
    Inventors: Rathin Datta, Andrew Reeves, Laura T. Kliman
  • Patent number: 8354257
    Abstract: A process for producing alcohol from syngas integrates the alcohol recovery with the removal of CO2 from syngas. A syngas feed containing CO, H2, and CO2 contacts an aqueous alcohol stream to remove CO2 from the syngas that then passes to bioreactor containing microorganisms for conversion to alcohol and other liquid products. Flashing of the scrubbing liquid releases the CO2 and simultaneously concentrates alcohol in the overhead flash vapor. Condensation of the flash vapor provides an enriched alcohol stream for enhanced recovery of the ethanol product in a product separation zone. The remainder of the scrubbing liquid along with make-up alcohol and water from the process gets returned for continued contact with the syngas feed.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 15, 2013
    Assignee: Coskata, Inc.
    Inventors: Rathin Datta, Ralph Corley
  • Patent number: 8329456
    Abstract: A stable system for producing liquid products such as ethanol, butanol and other chemicals from syngas components contacts CO or a mixture of CO2 and H2 with a highly porous side of an asymmetric membrane under anaerobic conditions and transferring these components into contact with microorganisms contained within bio-pores of the membrane. The membrane side of the membrane utilizes a dense layer to control hydration of the bio-pores with a liquid phase. The gas feed directly contacts the microorganisms in the bio-pores and maximizes their utilization of the syngas. Metabolic products produced by the microorganisms leave the membrane through the side opposite the entering syngas. This system and method establishes a unitary direction across the membrane for the supply of the primary feed source to the microorganisms and the withdrawal of metabolically produced products. The feed and product flow improves productivity and performance of the microorganism and the membrane.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8309348
    Abstract: A stable method for producing liquid products such as ethanol, propanol, butanol and other chemicals from syngas components that contacts CO or a mixture of CO2 and H2 with a highly porous side of an asymmetric membrane under anaerobic conditions and transfers these components into contact with microorganisms contained within bio-pores of the membrane. A liquid contacting side of the membrane utilizes a dense layer to control hydration of the bio-pores with a liquid phase. The gas feed directly contacts the microorganisms in the bio-pores and maximizes their utilization of the syngas. Metabolic products produced by the microorganisms leave the membrane through the side opposite the entering syngas. This method establishes a unitary direction across the membrane for the supply of the primary feed source to the microorganisms and the withdrawal of metabolically produced products. The feed and product flow improves productivity and performance of the microorganism and the membrane.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 13, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8303849
    Abstract: A method of HCN removal from syngas including treating a hot syngas stream for conversion to chemical products by removing various components from the hot syngas stream by: passing the hot syngas stream to a scrubber; adding aldehyde to a circulating scrubber water; capturing ammonia and HCN in the circulating scrubber water and condensing water from the hot syngas stream into the circulating scrubber water; withdrawing a scrubber waste water effluent from the scrubber comprising absorbed ammonia, ammonium, and absorbed HCN, and glycol nitriles, formed from the reaction of the aldehydes with HCN, from the scrubber; withdrawing a treated syngas stream effluent from the scrubber having a reduced concentration of ammonia and HCN; and, passing at least a portion of the scrubber waste water effluent stream to a biological treatment zone for the removal of ammonia, absorbed HCN, and glycol nitriles.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 6, 2012
    Assignee: Coskata, Inc.
    Inventor: Robert Hickey
  • Patent number: 8222026
    Abstract: A membrane supported bioreactor arrangement and method for anaerobic conversion of gas into liquid products including membrane modules having hollow fibers packed across a cross sectional area of the membrane module, each of the hollow fibers formed from an asymmetric membrane wall having a porous outer layer defining biopores for retaining a porous biolayer about the outer surface of the membrane wall and a less permeable hydration layer around the hollow fiber lumen; a membrane vessel for surrounding the outside of the hollow fibers with a process gas from a gas supply conduit; and a liquid supply conduit operably connected to the hollow fibers for supplying a process liquid to the hollow fiber lumens. The gas supply conduit enables the formation of a biolayer on the outer surface of the hollow fiber wall by interaction of microorganisms with the process gas and the production of a liquid product.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: July 17, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8211679
    Abstract: Ethanol and other liquid products produced by contacting carbon monoxide (CO) and/or a mixture of CO2 (carbon dioxide) and H2 (hydrogen) with a microorganism in a bioreactor are separated using a combination of distillation and vapor permeation membranes. The bioreactor passes an effluent with an ethanol concentration of 1 to 6 wt % to a distillation column that produces an overhead vapor stream enriched in ethanol. A series of vapor permeation membranes retain ethanol as retentate and produce a 99 wt % or higher ethanol product. Ethanol depleted permeate streams flow back to the column and the bioreactor. Coupling a bioreactor with distillation and pervaporation efficiently and economically separates ethanol when present at low concentration in an aqueous fermentation broth. The separation arrangement may also include a flash zone ahead of the distillation column to raise the concentration of the ethanol in the input stream to the distillation column.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: July 3, 2012
    Assignee: Coskata, Inc.
    Inventors: Rathin Datta, Rahul Basu, Hans E. Grethlein, Richard W. Baker, Yu Huang
  • Patent number: 8211692
    Abstract: The bioconversion of gas feedstreams to liquid products by direct contact with a layer of microorganism obtains enhanced productivity through the regular cycling of liquid across a substrate that supports a biolayer of microorganisms while separating the gas and liquid phases. Such processes produce liquid products such as ethanol, butanol and other chemicals from syngas components by contacting CO or a mixture of CO2 and H2 with a highly porous side of an asymmetric membrane under anaerobic conditions and transferring these components into contact with microorganisms contained within bio-pores of the membrane. A periodic laving of liquid from the liquid contact side to and away from the microorganisms can increase nutrient flow to the microorganisms while enhancing the recovery of liquid products.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: July 3, 2012
    Assignee: Coskata, Inc.
    Inventors: Rathin Datta, Shih-Perng Tsai, Jian Xu, Seong-Hoon Yoon
  • Patent number: 8212093
    Abstract: The production of feed for an olefin hydration zone is improved by integrating treatment of an alcohol containing stream from a fermentation zone into an alcohol separation section. The process passes a stream comprising alcohol, water and an organic acid to a separation column. The separation column concetrates the alcohol and organic acids into an upper column fraction. An additive for neutralization the organic acid into contact with said upper column fraction and reacts with the organic acid to produce a neutralization product that passes to a lower portion of the separation column. The column provides an overhead stream for an olefin dehydration zone having an increased concentration of alcohol and a reduced concentration of organic acid. A column bottoms stream containing the neutralization product returns as an input stream to supply the neutralization product to a fermentation zone that produces the alcohol containing stream.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: July 3, 2012
    Assignee: Coskata, Inc.
    Inventors: Rathin Datta, Richard E. Tobey, Rahul Basu
  • Publication number: 20120156747
    Abstract: An isolated clostridia bacterial species (Clostridium coskatii ATCC No. PTA-10522, “PS02”) is provided. Under anaerobic conditions C. coskatii can convert CO and/or H2 and/or CO2 to ethanol or acetate. Thus, this bacterium is capable of transforming waste gases (e.g. syngas and refinery wastes) into useful products.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 21, 2012
    Applicant: COSKATA, INC.
    Inventors: James A. Zahn, Jyotisna Saxena
  • Patent number: 8198055
    Abstract: Ethanol and other liquid products are produced by contacting syngas components such as CO or a mixture of CO2 and H2 with a surface of a membrane under anaerobic conditions and transferring these components in contact with a biofilm on the opposite side of the membrane. These steps provide a stable system for producing liquid products such as ethanol, butanol and other chemicals. The gas fed on the membrane's gas contact side transports through the membrane to form a biofilm of anaerobic microoganisms that converted the syngas to desired liquid products. A liquid impermeable layer of the membrane assists in establishing direct gas phase contact syngas components with the microorganisms. The system can sustain production with a variety of microorganisms and membrane configurations.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: June 12, 2012
    Assignee: Coskata, Inc.
    Inventors: Rathin Datta, Shih-Perng Tsai, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8143037
    Abstract: An isolated clostridia bacterial species (Clostridium coskatii ATCC No. PTA-10522, “PS02”) is provided. Under anaerobic conditions C. coskatii can convert CO and/or H2 and/or CO2 to ethanol or acetate. Thus, this bacterium is capable of transforming waste gases (e.g. syngas and refinery wastes) into useful products.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: March 27, 2012
    Assignee: Coskata, Inc.
    Inventors: James A. Zahn, Jyotisna Saxena
  • Patent number: 8101387
    Abstract: This invention is a process for managing the gas flow through a plurality of bioconversion modules that provide a gas liquid interface. The conversion modules provide the gas liquid interface across an activated surface that converts at least some of the gas components into desired liquid products. Arrangement of the modules and control of gas flow in accordance with this invention enhances the utilization of the gas and the production of desired liquid products by adjusting the flow area to compensate for changes in the volume of the feed gas. Improved control of the gas velocity through the bioconversion modules eliminates problems of liquid condensation and flow maldistribution. The process may sequence the modules to mitigate time variation in microorganism activity and incorporate additional periodic process steps.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 24, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Seong-Hoon Yoon, Rahul Basu
  • Publication number: 20120003652
    Abstract: Essential genes coding for the metabolic pathway of solventogenic autotrophic Clostridia were sequenced, and functionality was confirmed. The present invention utilizes a comparative inter-species approach to develop the minimum set of essential genes for metabolic function and estimate productivity in species of suspected solventogenic capability.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 5, 2012
    Applicant: COSKATA, INC.
    Inventors: Andrew Reeves, Fenglin Yin
  • Patent number: 8058058
    Abstract: A submerged membrane supported bioreactor for anaerobic conversion of gas into liquid products including a plurality of membrane modules having a plurality of hollow fibers, each of the plurality of hollow fibers having a gas permeable hollow fiber wall defining a hollow fiber lumen and an outer surface; a membrane tank for retaining the membrane modules at least partially submerged in a process liquid for formation of a biofilm on the outer surface of the hollow fiber wall by interaction of microorganisms with a process gas and for the production of a liquid product that mixes with the process liquid, wherein the membrane tank retains the membrane modules in a common horizontal plane; a seal between contents of the membrane tank and ambient atmosphere; and a gas supply conduit for communicating the process gas with the hollow fiber lumens of the hollow fibers.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: November 15, 2011
    Assignee: Coskata, Inc.
    Inventors: Robert F. Hickey, Shih-Perng Tsai, Seong-Hoon Yoon, Rahul Basu, Richard E. Tobey
  • Patent number: 8039239
    Abstract: Recombinant acetogenic Clostridia are engineered to modulate production of aliphatic C2-C6 alcohols and aliphatic C2-C6 organic acids from synthetic gases. One aspect of the invention provides a method of producing an aliphatic C2-C6 alcohol using an acetogenic Clostridium micro-organism having at least one genetic modification that reduces or eliminates C2-C6 carboxylic acid production by the modified organism. Another aspect of the invention provides a method of producing an aliphatic C2-C6 alcohol using an acetogenic Clostridium micro-organism having one or more genetic modifications that cause increased enzyme activity of carbon monoxide dehydrogenase, aldehyde ferredoxin oxidoreductase, NADPH-dependent alcohol dehydrogenase, or alcohol dehydrogenase.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 18, 2011
    Assignee: Coskata, Inc.
    Inventor: Andrew Reeves