Abstract: The present disclosure relates to computer-implemented systems and methods for detecting a feature-of-interest in a video. In one implementation, a computer-implemented system may include a discriminator network and a generative network. The discriminator network may include a perception branch and an adversarial branch, the perception branch being configured to output detections of the feature-of-interest in the video. The generative network may be configured to receive detections of the feature-of-interest from the perception branch of the discriminator network and generate artificial representations of the feature-of-interest based on the detections from the perception branch.
Abstract: The present disclosure relates to computer-implemented systems and methods for training and using generative adversarial networks to detect abnormalities in images of a human organ. In one implementation, a method is provided for training a neural network system, the method may include applying a perception branch of an object detection network to frames of a first subset of a plurality of videos to produce a first plurality of detections of abnormalities. Further, the method may include using the first plurality of detections and frames from a second subset of the plurality of videos to train a generator network to generate a plurality of artificial representations of polyps, and training an adversarial branch of the discriminator network to differentiate between artificial representations of the abnormalities and true representations of abnormalities.
Abstract: The present disclosure relates to computer-implemented systems and methods for training and using generative adversarial networks. In one implementation, a system for training a generative adversarial network may include at least one processor that may provide a first plurality of images including representations of a feature-of-interest and indicators of locations of the feature-of-interest and use the first plurality and indicators to train an object detection network. Further, the processor(s) may provide a second plurality of images including representations of the feature-of-interest, and apply the trained object detection network to the second plurality to produce a plurality of detections of the feature-of-interest.