Patents Assigned to Cosmo Oil Co., Ltd.
  • Patent number: 9404047
    Abstract: A start-up method for a hydrocarbon synthesis reaction apparatus, comprising: an initial slurry-loading step in which the slurry is loaded into the reactor at the initial stage of the Fischer-Tropsch synthesis reaction at a lower loading rate than that applied to the reactor in a steady-state operation; and a CO conversion ratio-increasing step in which the liquid level of the slurry in the reactor is raised by adding to the slurry the hydrocarbons synthesized at the early stage of the Fischer-Tropsch synthesis reaction so that the CO conversion ratio is increased in proportion to a rise in the liquid level of the slurry in the reactor.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 2, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Takeo Ito, Atsushi Murata, Eiichi Yamada, Yuzuru Kato, Yasuhiro Onishi
  • Patent number: 9404050
    Abstract: A startup method for a fractionator that is supplied with, and fractionally distills, a hydrocracked product obtained in a wax fraction hydrocracking step by hydrocracking a wax fraction contained within a Fischer-Tropsch synthetic oil, the method including a preheating step of preheating the fractionator using a hydrocarbon oil that includes at least a portion of the hydrocracked product and is liquid at a normal temperature and normal pressure.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 2, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9376352
    Abstract: A start-up method of a bubble column slurry bed reactor for producing hydrocarbons includes: a first step that fills into a reactor a slurry in which a Fischer-Tropsch synthesis reaction catalyst particles are suspended in a slurry preparation oil with a 5% distillation point of 120 to 270° C., a 95% distillation point of 330 to 650° C., and a sulfur component and an aromatic component of 1 mass ppm or less, and a second step that, in a state where synthesis gas that is primarily hydrogen and carbon monoxide is introduced into the slurry filled into the reactor, raises the temperature of the reactor and starts the Fischer-Tropsch synthesis reaction. As the slurry preparation oil, one containing predetermined components in preset amounts is used. In the first step, the slurry is filled into the reactor in an amount in which airborne droplets do not flow out.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: June 28, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9266099
    Abstract: The regenerated hydrocracking catalyst according to the present invention is a regenerated hydrocracking catalyst prepared by regenerating a used hydrocracking catalyst including: a catalyst support containing zeolite and an amorphous composite metal oxide having solid acidity; and at least one active metal supported by the catalyst support, selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the regenerated hydrocracking catalyst contains 0.05 to 1% by mass of a carbonaceous substance in terms of carbon atoms based on the entire mass of the catalyst.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: February 23, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Publication number: 20160046969
    Abstract: Provided is a method for producing 5-aminolevulinic acid or a salt thereof at a high yield using 5-aminolevulinic acid-producing microorganisms. The method for producing 5-aminolevulinic acid or a salt thereof comprises culturing 5-aminolevulinic acid-producing microorganisms in a medium comprising one or more components selected from the group consisting of L-arginine, glutamic acid, and a salt thereof. The content of glutamic acid or the salt thereof is from 42 to 100 mM in the medium as the glutamic acid.
    Type: Application
    Filed: March 19, 2014
    Publication date: February 18, 2016
    Applicant: COSMO OIL CO., LTD.
    Inventors: Masaru SAITO, Taishi YAMAMOTO, Haruki KAWANO
  • Patent number: 9248387
    Abstract: A filter cleaning apparatus used in a reaction system including; a reaction tank having a filter, first feed line connected to the filter at one end, a recovery tank connected to the other end of the first feed line, and second feed line connected to the recovery tank at one end, is provided. The filter cleaning apparatus includes; first return line connected the second feed line at one end, first and second reverse cleaning solution tanks connected to the first return line, a first flow rate adjusting valve that can adjust filtered fluid to be supplied to the first reverse cleaning solution tank, a second flow rate adjusting valve that can adjust filtered fluid to be supplied to the second reverse cleaning solution tank, and a switching section that carries either one of the filtered fluids accommodated in these reverse cleaning solution tanks by switching.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: February 2, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Atsushi Murata, Eiichi Yamada, Shinji Fukumoto
  • Publication number: 20160008796
    Abstract: A method for producing a catalyst for catalytic cracking of a hydrocarbon oil easily produces a catalyst for catalytic cracking of a hydrocarbon oil that exhibits high cracking activity with respect to a heavy hydrocarbon oil, and can produce a gasoline fraction having a high octane number in high yield. The method includes preparing an aqueous slurry that includes 20 to 50 mass % of a zeolite having a sodalite cage structure, 10 to 30 mass % (on a SiO2 basis) of a silica sol, 0.1 to 21 mass % (on an Al2O3.P2O5 basis) of mono aluminum phosphate, and 5 to 65 mass % of a clay mineral on a solid basis, aging the aqueous slurry for 5 to 200 minutes, and spray-drying the aqueous slurry.
    Type: Application
    Filed: March 17, 2014
    Publication date: January 14, 2016
    Applicant: COSMO OIL CO., LTD.
    Inventor: Yuji SAKA
  • Publication number: 20160007599
    Abstract: Plant growth accelerator comprising, as an active ingredient, 5-amino-4-hydroxypentanoic acid of formula (1) H2NCH2CH(OH)CH2CH2COOR1 ??(1) wherein R1 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, a derivative thereof or a salt thereof.
    Type: Application
    Filed: March 6, 2014
    Publication date: January 14, 2016
    Applicant: COSMO OIL CO., LTD.
    Inventors: Jun LI, Yasunobu UEDA, Shigeyuki WATANABE, Yasutomo TAKEUCHI
  • Publication number: 20160002675
    Abstract: Provided is a method for efficiently producing ethanol even when a fermentation inhibitor is present in a cellulosic biomass hydrolysate. A method for producing ethanol comprising fermenting a fermentation broth comprising a cellulosic biomass hydrolysate using an yeast belonging to Candida intermedia under a condition such that an air supply rate into a fermenter is from 0.0001 to 100 L/hour/g dry cell weight.
    Type: Application
    Filed: February 28, 2014
    Publication date: January 7, 2016
    Applicant: COSMO OIL CO., LTD.
    Inventors: Hiroshi NAGASAKI, Yuya SUZUKI
  • Patent number: 9200210
    Abstract: The method for stopping operation of a reactor is provided with a stop step of stopping supply of a synthesis gas containing a carbon monoxide gas and a hydrogen gas into the reactor; a slurry discharge step of discharging slurry from the reactor; a steam supply step of supplying steam higher in temperature than the decomposition temperatures of metal carbonyls into the reactor, thereby discharging gaseous matters inside the reactor; and a carbon monoxide gas detecting step of detecting an amount of carbon monoxide gas contained in the gaseous matters discharged from the reactor. In the steam supply step, supply of the steam is stopped when an amount of the detected carbon monoxide gas continuously declines to be lower than a predetermined reference value.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 1, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Shinya Arai
  • Patent number: 9193917
    Abstract: A method for estimating a particulate content in a slurry of the present invention is a method for estimating a content of particulates having a predetermined particle size or less in a slurry with solid particles dispersed in hydrocarbons including a wax, the method including, based on a correlation between a visible light transmittance and a content of solid particles having the predetermined particle size or less at a temperature at which hydrocarbons including a wax are liquefied when the solid particles having the predetermined particle size or less are dispersed in the hydrocarbons, estimating a content of particulates having the predetermined particle size or less in the slurry from a visible light transmittance of a supernatant part when the slurry is left to stand at the temperature.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 24, 2015
    Assignees: JAPAN OIL. GAS AND METALS NATIONAL CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, COSMO OIL CO., LTD., INPEX CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuaki Hayasaka
  • Patent number: 9186658
    Abstract: The hydrocracking catalyst of the present invention is a hydrocracking catalyst comprising a catalyst support comprising a zeolite and an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrocracking catalyst contains a carbonaceous substance comprising a carbon atom, and the content of the carbonaceous substance in the hydrocracking catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 17, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 9181492
    Abstract: The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2?T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 10, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Yuichi Tanaka
  • Patent number: 9162170
    Abstract: A synthesis reaction system is provided with: a reactor which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including hydrogen and carbon monoxide as main components, and a slurry having solid catalyst particles suspended in liquid; a separator which separates the hydrocarbon compound from the slurry; and a filtering device which filters the hydrocarbon compound extracted from the separator to trap powdered catalyst particles.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 20, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventors: Yasuhiro Onishi, Yuzuru Kato, Atsushi Murata, Eiichi Yamada
  • Patent number: 9139779
    Abstract: A catalyst separation system which separates catalyst particles from liquid hydrocarbons synthesized by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the catalyst separation system is provided with: a reactor; a storage tank which stores the slurry drawn from the reactor; a plurality of filters which filters the slurry; and a filtrate recovery vessel which recovers a filtrate which has passed through the plurality of filters, wherein the plurality of filters is disposed in series in a flow line for the slurry from the storage tank to the filtrate recovery vessel.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 22, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventors: Yasuhiro Onishi, Yuzuru Kato, Eiichi Yamada, Kentarou Morita
  • Patent number: 9120981
    Abstract: A hydrocarbon synthesis reaction apparatus synthesizes hydrocarbons by a Fischer-Tropsch synthesis reaction. The apparatus includes a reactor; a flowing line; a first cooling unit; a second cooling unit; a first separating unit which separates the liquid hydrocarbons condensed by the first cooling unit from the gaseous hydrocarbons; and a second separating unit which separates the liquid hydrocarbons condensed by the second cooling unit from the gaseous hydrocarbons. The first cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range equal to or lower than a condensing point at which a wax fraction condenses, and higher than a freezing point at which the wax fraction solidifies. The second cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range lower than the temperature to which the gaseous hydrocarbons are cooled by the first cooling unit, and higher than a freezing point at which a middle distillate solidifies.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: September 1, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventor: Yasuhiro Onishi
  • Publication number: 20150209771
    Abstract: A catalyst for catalytic cracking of a hydrocarbon oil can produce a gasoline fraction having a high octane number in high yield while suppressing an increase in yield of a heavy distillate, and produce LPG having a high propylene content in high yield. The catalyst includes a specific amount of a granulated catalyst A that includes a zeolite having a sodalite cage structure, silicon derived from a silica sol, phosphorus and aluminum derived from mono aluminum phosphate, a clay mineral, and a rare-earth metal, and a specific amount of a granulated catalyst B that includes a pentasil-type zeolite, the ratio of the mass of phosphorus and aluminum derived from mono aluminum phosphate included in the granulated catalyst A to the mass of the pentasil-type zeolite included in the granulated catalyst B being 0.015 to 3000.
    Type: Application
    Filed: October 8, 2013
    Publication date: July 30, 2015
    Applicant: COSMO OIL CO., LTD.
    Inventors: Yuji SAKA, Tetsuya KIMURA, Norihito CHIYODA, Kenji NAGAI, Mitsunori TABATA
  • Patent number: 9061949
    Abstract: A metal component absorption enhancer which enhances the absorption of at least one metal component selected from the elements belonging to groups 2 to 12 in the third to fourth periods when a plant grows. The metal component absorption enhancer contains 5-aminolevulinic acid or a derivative thereof represented by the following general formula (1), or a salt thereof as an active ingredient: R2R1NCH2COCH2CH2COR3??(1) wherein R1 and R2 each independently represents a hydrogen atom, an alkyl group, an acyl group, an alkoxycarbonyl group, an aryl group, or an aralkyl group; R3 represents a hydroxyl group, an alkoxy group, an acyloxy group, an alkoxycarbonyloxy group, an aryloxy group, an aralkyloxy group, or an amino group, and is used for performing a treatment with 0.001 to 20 ppm of the 5-aminolevulinic acid, the derivative thereof, or the salt thereof per each time.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: June 23, 2015
    Assignee: COSMO OIL CO., LTD.
    Inventors: Naohisa Tachiya, Shigeyuki Funada, Masahiro Ishizuka
  • Publication number: 20150166900
    Abstract: The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2?T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.
    Type: Application
    Filed: February 23, 2015
    Publication date: June 18, 2015
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Yuichi TANAKA
  • Patent number: 9056772
    Abstract: It is avoided that the sulfur compounds originating from the castable is mixed into produced synthesis gas, the mixed sulfur compounds are separated and collected with carbon dioxide, the collected carbon dioxide is recycled as raw material gas and then the sulfur compounds is directly supplied to the reformer to consequently degrade the reforming catalyst in the reformer by sulfur poisoning. The carbon dioxide separated and collected in the carbon dioxide removal step is introduced into the desulfurization apparatus of the desulfurization step or the sulfur compounds adsorption apparatus before being recycled to the reformer to remove the sulfur compounds.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: June 16, 2015
    Assignees: JAPAN OIL GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD., CHIYODA CORPORATION
    Inventors: Shinya Hodoshima, Fuyuki Yagi, Shuhei Wakamatsu, Kenichi Kawazuishi