Abstract: An implantable line, in particular an electrode line and/or sensor line and/or medicine supply line for implantation in the left ventricle of the heart with perforation of the atrial or ventricular septum, includes an elongated flexible line body, an electrode and/or a sensor and/or a medicine administering device at or near the distal end of the line body, and a closure element integrally molded on the line body or connected thereto for sealing the perforation site in the septum.
Abstract: An implantable cardiac stimulator (10), configured to switch mode of operation between at least one right ventricular stimulation mode in which no control signals triggering left ventricular stimulation pulses are delivered to the left ventricular stimulation unit and a biventricular stimulation mode in alternation. Switching takes place as a function of duration of prevailing QRS signal interval, such that the cardiac stimulator switches to biventricular stimulation mode when comparison of the duration of a prevailing QRS signal interval with a first comparison value reveals the duration of the prevailing QRS signal interval is longer than a first reference value represented by the first comparison value and switches to right ventricular stimulation mode when comparison of the duration of a prevailing QRS signal interval with a second comparison value reveals the duration of the prevailing QRS signal interval is shorter than a second reference value represented by the second comparison value.
Type:
Grant
Filed:
November 12, 2008
Date of Patent:
August 13, 2013
Assignee:
Biotronik CRM Patent AG
Inventors:
Thomas Doerr, Dirk Muessig, Volker Lang
Abstract: Methods, devices, and processor-readable storage media are provided for the diagnosis of heart failure. A method in this context includes collecting, using an implantable device, reference episodes, the reference episodes comprising, at least one of: electrical activity signals of a myocardium; myocardium hemodynamic activity signals, or indicators reflecting variation of physical parameters, variation of activity, and variation of hemodynamic phases between phases of effort and phases of recovery; generating an in-suspicion model-cycle and an off-suspicion model-cycle based on the reference episodes; and determining whether to generate an early heart failure alert, based on a difference between the in-suspicion model-cycle and the off-suspicion model-cycle.
Abstract: An active medical device such as pacemaker, defibrillator and/or resynchronizer with automatic optimization of atrioventricular delay is disclosed. The active medical device is adapted for analyzing a signal delivered by a hemodynamic sensor such as an endocardial acceleration sensor, whose variation according to the AVD is represented by a sigmoid function. An optimal AVD is searched by: applying a reference AVD (XC), at least one left AVD (XL, XLL) and at least one right AVD (XR, XRR); measuring the corresponding hemodynamic parameters (Y1, Y2, Y3, Y4, Y5); evaluating the second derivative of the function at the respective points (XC, Y3; XL, Y2, XR, Y4) of the characteristic corresponding to the reference AVD, to the left AVD and to the right AVD; estimating from these values of second derivatives, the position of an intermediate point of the characteristic for which the second derivative is zero or minimum, and determining the corresponding AVD for that intermediate point as the optimal AVD.
Abstract: An active implantable medical device such as a cardiac prosthesis, including ventricular capture testing by analysis of an endocardial acceleration signal. The device isolates in an endocardial acceleration (“EA”) signal an EA component, extracts from it, n representative indicators (PEA_i, LEA_i), and forms a vector EA (X_i) from these indicators. A classifier allows acquiring reference EA signals at a stimulation energy level sufficient to cause a capture, and in spontaneous rhythm in the absence of ventricular pacing and forms a corresponding plurality of first reference EA vectors. The n-dimensional space of the EA vectors is partitioned into two corresponding subspaces. The presence or absence of a capture is discriminated based on the position of the current EA vector (X_i) in one or other of these two sub-spaces.
Abstract: The invention relates to a service unit (30) having an interface (54) for receiving data from a personal medical device, an analysis unit (52) connected to the interface (54) for analyzing data received from the personal medical device (10), and an aftercare appointment determination unit (54) for determining a particular next aftercare appointment at least on the basis of data received from a particular personal medical device (10).
Abstract: An implantable catheter lead or electrode lead includes an elongated flexible lead body with the fixation means attached to the lead body, for the purpose of effecting fixation of the catheter lead or electrode lead in a predetermined position within a vessel or a bodily cavity of a patient. A releasable attachment is provided between the lead body and the fixation means such that an explantation of the catheter lead or electrode lead is possible after the attachment is released while the fixation means remains in place within the body of the patient.
Abstract: Methods, devices, and processor-readable storage media are provided for detecting spontaneous ventricular events in a heart using implantable medical devices. A method in this context includes applying a sensitivity function to collected data to detect occurrence of ventricular events. The sensitivity function is based on an adjustable detection threshold. The method further includes determining whether noise is suspected to be present in the data and, if so, increasing the threshold. The method further includes providing a stimulation pulse to the heart when a ventricular event has not occurred after a predetermined escape interval and, following the stimulation pulse, applying a capture test to detect whether an induced depolarization has occurred. If induced polarization is not detected, the threshold is reduced, while the threshold is maintained if induced polarization is detected.
Abstract: An active implantable medical device having wireless communication of data via electrical pulses conducted by the interstitial tissues of the body. This device (12, 14) includes a pair of electrodes (22, 24) and generates pulse trains consisting of a series of electrical pulses applied to the electrodes. The pulse train is modulated by digital information (data) that is produced by the device. A regulated current or voltage source (42) is used to generate (44, 48) current or voltage pulses to form the pulse train. Each current or voltage pulse is a biphasic pulse comprising a positive and negative alternation. The biphasic current or voltage modulated by the digital information, is injected between the electrodes (22, 24) and wirelessly communicated.
Abstract: A field decoupling element for use with an implantable line with an elongated line body and a function conductor which extends in the longitudinal direction of the line body and acts to implement a medical function of the line, such that the field decoupling element is in electric contact with the function conductor in the use state connected to the line and reduces coupling of the function conductor to an external field.
Type:
Grant
Filed:
April 10, 2009
Date of Patent:
May 21, 2013
Assignee:
Biotronik CRM Patent AG
Inventors:
Ingo Weiss, Stefan Knorr, Michelle Maxfield, Michael Friedrich
Abstract: In an embodiment of the present invention, a Response object collects and synchronizes information from other types of objects as may be implemented in a CRM system. For example, certain objects may include a Lead or Contact Object, a Campaign object, and an Opportunity Object that is synchronized into a Response object. In this way, the results for a given Lead or Contact can be directly attributed to the Campaign or Opportunity without having to guess as may be necessary in certain typical CRM systems.
Type:
Application
Filed:
September 1, 2012
Publication date:
May 9, 2013
Applicant:
FULL CIRCLE CRM, INC.
Inventors:
Daniel S. Appleman, Roan Bear, Andrea Wildt, Bonnie Crater
Abstract: A pacemaker comprising a battery compartment displaceable between a removal position and an operating position along a first direction of displacement for receiving a replaceable battery having a first and a second battery pole disposed on a battery face. The battery compartment comprises an electrically isolating partial cover, which is disposed on a second side opposite the first side and designed to cover a base of the battery directed toward the second side in the direction of the removal side of the battery compartment.
Type:
Grant
Filed:
March 16, 2010
Date of Patent:
May 7, 2013
Assignee:
Biotronik CRM Patent AG
Inventors:
Joachim Stump, Enrico Brzank, Konrad Weber, Peter Grund, Oliver Krips
Abstract: An active implantable medical device with atrial pacing for the treatment of diastolic heart failure. This device comprises circuits and leads for collecting right and left atrial events (16,18) and pacing the left atrium (18) and a sensor detecting myocardium contractions, preferably an endocardial acceleration sensor (20), delivering a signal representative of the myocardium contractions. Analysis of the signal allows a determination of the presence or absence of a detectable left atrial contraction distinguishable from the ventricular contraction. An interatrial delay is applied between the collection of a right atrial depolarization and the delivery of a left atrial pacing pulse. In the absence of left atrial contraction, the interatrial delay is iteratively reduced in successive cardiac cycles from an initial value to an adjustment value ensuring that a left atrial contraction appears, and then so maintained while the presence of a left atrial contraction continues.
Abstract: An adapter for temporary sterile electric connection of an implantable medical electronic device to an electrode line that is to be connected to the implantable medical electronic device during implantation for undistorted transmission of measured values detectable on the electrode line to the device.
Abstract: A medical, implantable electrode device, in particular a cardiological electrode device, comprises an elongate electrode body (2) having a proximal and a distal end (1) for insertion into the body of the patient and multiple strut-like anchoring elements (4), which are attached laterally to the electrode body (2) before the distal end (1) for fixing the electrode device in the patient and are distributed around the circumference, which each project having their longitudinal axis (SL) at an acute angle (W1) opening in the direction of the proximal end in relation to the electrode body axis (KL). The anchoring elements have a preferred direction around the circumference in such a way that upon engagement of the anchoring elements (4) in a body part of the patient, a rotation of the electrode body (2) is opposed by a greater resistance in one rotational direction than in the opposite direction.
Abstract: The invention relates to methods by which radio signals can be transmitted to, and received by, a radio receiver such that the receiver consumes very little power from a battery or energy source. The invention also relates to methods by which radio signals, modulated with data information, can be produced by a transmitter that consumes very little power. The invention is applicable not only to medical implants, but any application requiring a radio receiver to operate with very low power consumption.
Type:
Grant
Filed:
June 10, 2008
Date of Patent:
April 23, 2013
Assignee:
Biotronik CRM Patent AG
Inventors:
Brian P. Sutton, Jim Nelson, Paul Stadnik, Gary Rolison, Richard Berthelsdorf
Abstract: A controlled switching module (40, 42), for a multielectrode lead for an active implantable medical device, which connects a detection/stimulation electrode (28, 30) to one or the other conductor (36, 38) of a two-wire line. Two volatile controlled switches (52, 54), for example, complementary MOS associated with at least one non-volatile programmable memory component (68, 70), for example, a suspended nanotube cell or a magnetic tunnel junction cell, supply two previously programmed stable open or closed states. A generator maximum-minimum circuit (58) is coupled to the conductors at the input, and to the controlled switches at the output for selectively controlling them via the corresponding non-volatile memory component (68, 70).
Abstract: A microlead implantable in a patient's venous, arterial or lymphatic networks for the detection and/or stimulation of tissue. The microlead has a diameter at most equal to 2 French (0.66 mm) and comprises at least one microcable (40) comprising a core cable (11) and an insulation layer (20) partially surrounding the core. The core is formed of a plurality of strands, and has a composite structure comprising a structuring material having high fatigue resistance, and a radiopaque material. A denuded area (30) is formed in the isolation layer (20) so as to form at least one electrode for stimulation detection. The microlead is shaped at the electrodes (30) according to at least one electrical contact and mechanical stabilization preshape, and has a gradual decrease of rigidity along the microlead between its proximal portion and its distal portion.
Type:
Application
Filed:
October 11, 2012
Publication date:
April 18, 2013
Applicant:
SORIN CRM SAS
Inventors:
Nicolas Shan, Jean-Francois Ollivier, Philippe d'Hiver
Abstract: A device and a method for working with electromagnetic fields, specifically those fields that occur in image-guided nuclear spin tomography examinations (MRT or MRI). More precisely, the invention concerns an at least partially implanted medical device (IMD) that permits the delivery of electrical stimulation impulses by an electrode only in timeframes, in which no electromagnetic interferences are recognized and/or the control unit performs a reconstruction of electrical measurements for the timeframes in which electromagnetic interferences are recognized.
Abstract: A device and a method for working in the presence of electromagnetic fields, in particular fields occurring in magnetic resonance tomography (referred to below as “MRT” or “MRI”) imaging devices. More precisely, the invention relates to a medical device (MD) in which an electrode is in contact with bodily tissue, and for detection of electromagnetic interference fields the input characteristic of the MD is automatically modified by a switching device in such a way that the influences of the electromagnetic interference fields are minimized.