Abstract: An improvement in an electrostatic precipitator and method for removing particulate contaminants entrained in a gas stream passed through an electrode arrangement in which particulates are charged in a first electrostatic field and subjected to a second electrostatic field to be removed and collected for further disposition. The electrode arrangement includes a charging section having a charging electrode and a field electrode, and a collecting section having a repelling electrode and a collecting electrode. The field electrode and the collecting electrode are integrated, providing a relatively compact construction, and the charging electrode and the repelling electrode are electrically separated by high voltage diodes in a single power supply arrangement such that the charging section and the collecting section each are provided with a corresponding electrostatic field operated at an optimum voltage and current for respectively charging and collecting particulate contaminants entrained in the gas stream.
Type:
Grant
Filed:
October 26, 2001
Date of Patent:
January 21, 2003
Assignee:
Croll Reynolds Clean Air Technologies, Inc.
Abstract: A condensing wet electrostatic precipitator for cleaning hot gases is constructed of collection electrode modules which establish longitudinally extending collection electrodes and a cooling jacket, each collection electrode module having a configuration including at least one part-tubular section and a cooling fluid chamber integral with the part-tubular section for containing cooling medium for cooling the part-tubular section. In some arrangements, the collection electrode modules are spaced apart laterally to enable the passage of the hot gases through the collection electrodes in a direction transverse to the longitudinal direction in which the collecting electrodes extend.
Type:
Grant
Filed:
February 22, 2001
Date of Patent:
September 25, 2001
Assignee:
Croll Reynolds Clean Air Technologies, Inc.
Abstract: A condensing wet electrostatic precipitator is constructed of collection electrode modules which establishing collection electrodes and a cooling jacket, each collection electrode module having a configuration including at least one part-tubular section and a cooling fluid chamber integral with the part-tubular section for containing cooling medium for cooling the part-tubular section, the configuration of each collection electrode module being such that upon assembly of the collection electrode modules into an assembly of juxtaposed collection electrode modules the part-tubular sections are juxtaposed to establish at least one corresponding generally tubular collection electrode comprised of the juxtaposed part-tubular sections and the discrete cooling fluid chambers are juxtaposed to establish a corresponding cooling jacket comprised of the juxtaposed discrete cooling fluid chambers.
Type:
Grant
Filed:
March 30, 1999
Date of Patent:
February 27, 2001
Assignee:
Croll Reynolds Clean Air Technologies, Inc.
Abstract: Apparatus and method for removing particulates and corrosive gases from a gas stream includes the serial use of a condensing wet electrostatic precipitator section for removing smaller particulates, in the submicron range, in conjunction with a vertically aligned preliminary scrubber section which removes larger particulates, in the micron range, and corrosive gases, in an integrated unit in which the temperature and moisture conditions in the gas stream are controlled for assuring effective and efficient operation of the condensing wet electrostatic precipitator section. Discharge electrodes of the electrostatic precipitator are supported by insulators which are protected against deleterious deposits of particulates by discharge electrode elements and collector electrode elements placed between the gas stream and the insulators.
Type:
Grant
Filed:
June 17, 1998
Date of Patent:
August 29, 2000
Assignee:
Croll Reynolds Clean Air Technologies, Inc.
Abstract: An improvement in the operation of a thermal oxidizer during regeneration of an adsorber, wherein adsorbates collected in the adsorber are removed from the adsorber and introduced into the thermal oxidizer, by regenerative steam passed through the adsorber, to be oxidized in the thermal oxidizer during a regenerative cycle of prescribed duration, regulates the concentration of adsorbates in the regenerative steam passed to the thermal oxidizer such that the concentration of adsorbates introduced into the thermal oxidizer throughout the duration of the regenerative cycle is regulated to avoid excessive deviations from a selected average concentration of adsorbates, the regulated concentration of adsorbates enabling more efficient operation of the thermal oxidizer throughout the full duration of the regenerative cycle.
Type:
Grant
Filed:
April 23, 1998
Date of Patent:
March 14, 2000
Assignee:
Croll Reynolds Clean Air Technologies, Inc.