Abstract: The present invention relates to compositions in the form of an oil-in-water emulsion preferably comprising an aqueous phase, a natural wax, at least two surfactants, and a neutralizing agent.
Abstract: Provided is a novel chalcogen-containing organic semiconductor compound having excellent carrier mobility. The compound is represented by Formula (1a) or (1b): [Chem. 1] where in Formulas (1a) and (1b), X represents S, O, or Se, and R1 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an aralkyl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group.
Type:
Grant
Filed:
August 29, 2019
Date of Patent:
April 30, 2024
Assignees:
THE UNIVERSITY OF TOKYO, PI-CRYSTAL INC.
Abstract: Provided is a semiconductor device and a method of manufacturing the semiconductor device that is capable of improving the connection reliability between an electronic element and a substrate in a semiconductor device in which the electronic element is fixed to the substrate. The semiconductor device includes: a substrate 10 provided with wirings and wiring connection parts 12 connected to the wirings; electronic elements 20, 30, 40, and 50 electrically connected to the wiring connection parts 12 and fixed to the substrate; and a resin film 60 laminated on one surface of the substrate 10, conforming to the shapes of the electronic elements 20, 30, 40, and 50, and covering the electronic elements 20, 30, 40, and 50.
Type:
Application
Filed:
October 8, 2021
Publication date:
August 10, 2023
Applicants:
The University of Tokyo, PI-CRYSTAL INC., ORGANO-CIRCUIT INC.
Inventors:
Junichi Takeya, Kazuyoshi Watanabe, Han Nozawa, Yuichi Ono
Abstract: A portable electronic device that selectively deploys a liquid incapacitating chemical agent is described. During operation, the portable electronic device receives or provides a trigger signal. For example, the portable electronic device may include a trigger (such as a mechanical or an electronic trigger), and the portable electronic device may provide the trigger signal when the trigger is activated. Alternatively or additionally, the portable electronic device may provide the trigger signal when an individual is detected in proximity or may receive the trigger signal via wireless communication. In response to the trigger signal, a control circuit provides a control signal to a pump. Then, based at least in part on the control signal, the pump transfers the liquid incapacitating chemical agent from a reservoir to a nozzle. Next, the nozzle discharges the liquid incapacitating chemical agent, e.g., in a stream, where the stream is external to the portable electronic device.
Abstract: The present invention relates to compositions in the form of an oil-in-water emulsion preferably comprising an aqueous phase, a natural wax, at least two surfactants, and a neutralizing agent.
Abstract: A thermophotovoltaic generator uses conveniently available liquid hydrocarbon fuels. The fuels are controllably heated and vaporized before ignition to avoid residue and deposits as a result of liquid fuel being prematurely exposed to high temperatures of combustion causing unwanted breakdowns, producing power robbing residues and deposits. Heating fuel and air to right temperatures for ignition is accomplished by drawing combustion air over an exhaust chamber, through a regenerator and through a passage surrounding an IR filter. A separate cooling fan drives air through photovoltaic cell array fins over the recuperator and the exhaust in counterflow to the combustion air.
Abstract: Provided is a novel chalcogen-containing organic semiconductor compound having excellent carrier mobility. The compound is represented by Formula (1a) or (1b): [Chem. 1] where in Formulas (1a) and (1b), X represents S, O, or Se, and R1 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an aralkyl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group.
Type:
Application
Filed:
August 29, 2019
Publication date:
July 1, 2021
Applicants:
THE UNIVERSITY OF TOKYO, PI-CRYSTAL INC.
Abstract: Active matrix array devices are constituted by devices that have a function such as those of a display/light emitting device, a sensor, a memory or an actuator, and are arranged in a matrix array shape, and the expansion of usage in various fields and applications is expected. However, there is little similarity and compatibility in the forming process and materials between a device such as a display/light emitting device, a sensor, a memory, or an actuator, and a circuit portion that controls such a device in the matrix element, and therefore the device and the circuit portion are mutually restricting factors. This results in an increase in the manufacturing cost and limitation of the function. A conventional active matrix array device is manufactured by performing various process steps on the same substrate. Control circuit portions each including a transistor are formed in some of the process steps.
Abstract: Heterojunction GaSb Photocells for operating in wavelengths around 1.6 microns have P type GaSb wafers with backside P+ back metal contacts. Patterned active areas are created on the front side and receive a thin passivation film. A thin N+ transparent SnO2 or tin conductive oxide is deposited on the passivation film. A front contact grid is deposited. The thin passivating film is either amorphous silicon (a-Si:H) or TiO2 with a hydrogen plasma pretreatment. The deposited N+ transparent SnO2 or tin conductive oxide forms an N+/P Heterojunction cell. Front grid contacts and full back contacts are deposited. An antireflective coating is applied through the grids.
Abstract: A raw material solution (6), in which an organic semiconductor material is dissolved in a solvent, is supplied to a substrate (1). The solvent is evaporated so that crystals of the organic semiconductor material are precipitated. Thus, an organic semiconductor thin film (7) is formed on the substrate (1). An edge forming member (2) having a contact face (2a) on one side is used and located opposite the substrate (1) so that the plane of the contact face (2a) intersects the surface of the substrate (1) at a predetermined angle. The raw material solution (6) is supplied to the substrate (1) and formed into a droplet (6a) that comes into contact with the contact face (2a).
Abstract: Disclosed are apparatuses and methods for growing thin crystal fibers via optical heating. The apparatuses may include and the methods may employ a source of optical energy for heating a source material to form a molten zone of melted source material, an upper fiber guide for pulling a growing crystal fiber along a defined translational axis away from the molten zone, and a lower feed guide for pushing additional source material along a defined translational axis towards the molten zone. For certain such apparatuses and the methods that employ them, the lower feed guide's translational axis and upper fiber guide's translational axis are substantially aligned vertically and axially so as to horizontally locate the source material in the path of optical energy emitted from the optical energy source, in some cases to within a horizontal tolerance of about 5 ?m.
Abstract: A compact power supply and battery substitute has a cylindrical wall with combustion air and cooling air fans at opposite ends. Air and fuel vapor flows through a mixing tube and an Omega recuperator to a combustion chamber and heats IR emitters spaced from TPV cells. An emitter post array or a catalytic matched emitter are heated by combustion. Exhaust is conducted through the recuperator that heats secondary air and fuel vapors and air in a mixing tube. Cooling air flows over fins radially extending from the TPV cells and past the recuperator and, mixes with exhaust from the recuperators and flows out of the housing past the combustion air fan. Fans are self-powered, and resulting electric power replaces batteries.