Patents Assigned to Crystal Solar, Inc.
  • Patent number: 9455360
    Abstract: Methods of fabricating metal wrap through solar cells and modules for thin silicon solar cells, including epitaxial silicon solar cells, are described. These metal wrap through solar cells have a planar back contact geometry for the base and emitter contacts. Fabrication of a metal wrap through solar cell may comprise: providing a photovoltaic device attached at the emitter side of the device to a solar glass by an encapsulant, the device including busbars on the device emitter; forming vias through the device base and emitter, the vias terminating in the busbars; depositing a conformal dielectric film over the surface of the vias and the back surface of the base; removing portions of the conformal dielectric film from the ends of the vias for exposing the busbars and from field areas of the base; and forming separate electrical contacts to the busbars and the field areas on the back surface of the solar cell.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: September 27, 2016
    Assignee: Crystal Solar, Inc.
    Inventors: Ashish Asthana, Tirunelveli S. Ravi, Kramadhati V. Ravi, Somnath Nag
  • Patent number: 8900399
    Abstract: An anodic etching system for simultaneously etching a multiplicity of substrates comprises: an etching tank for containing therein an etchant solution; a power supply connected between a first electrode and a second electrode, the first electrode and the second electrode being immersible in the etchant solution and positioned at opposite ends of the tank; and a plurality of support plates serially arranged between the first electrode and the second electrode and sealed to walls of the tank, wherein each of the plurality of support plates is configured to support at least one of the multiplicity of substrates, and wherein any consecutive pair of the plurality of support plates defines an isolated volume of the tank for containing a portion of the etchant solution. The plurality of support plates may be susceptors configured for holding the multiplicity of substrates in a chemical vapor deposition tool.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: December 2, 2014
    Assignee: Crystal Solar, Inc.
    Inventors: Tirunelveli S. Ravi, Ananda H. Kumar, Ashish Asthana, Kyle Ross Tantiwong, Visweswaren Sivaramakrishnan
  • Publication number: 20140338718
    Abstract: A solar cell comprises an optically transparent handle, wherein the handle includes grooves into which tabs are inserted, enabling the use of high aspect ratio tabs with minimal shading of the front side of the solar cell. Electrical connection of the tabs to busbars on the surface of the layers of the solar cell is through apertures at the bottom of each groove on the handle—the grooves being aligned to the busbars. The apertures may be filled with solder, metal pins, metal spheres, etc, and in embodiments the tabs may be metal wires. The solar cells with optically transparent handles may be formed into solar cell modules. Furthermore, in embodiments the handle with integral tabs simplifies and reduces the cost of solar cell and module fabrication since the top surface of the transparent handle including tabs may be completely flat.
    Type: Application
    Filed: March 12, 2014
    Publication date: November 20, 2014
    Applicant: Crystal Solar, Inc.
    Inventor: Tirunelveli S. Ravi
  • Patent number: 8883552
    Abstract: Methods of fabricating metal wrap through solar cells and modules for thin silicon solar cells, including epitaxial silicon solar cells, are described. These metal wrap through solar cells have a planar back contact geometry for the base and emitter contacts. Fabrication of a metal wrap through solar cell may comprise: providing a photovoltaic device attached at the emitter side of the device to a solar glass by an encapsulant, the device including busbars on the device emitter; forming vias through the device base and emitter, the vias terminating in the busbars; depositing a conformal dielectric film over the surface of the vias and the back surface of the base; removing portions of the conformal dielectric film from the ends of the vias for exposing the busbars and from field areas of the base; and forming separate electrical contacts to the busbars and the field areas on the back surface of the solar cell.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: November 11, 2014
    Assignee: Crystal Solar Inc.
    Inventors: Ashish Asthana, Tirunelveli S. Ravi, Kramadhati V. Ravi, Somnath Nag
  • Publication number: 20140182673
    Abstract: Fabrication of a single crystal silicon solar cell with an insitu epitaxially deposited very highly doped p-type silicon back surface field obviates the need for the conventional aluminum screen printing step, thus enabling a thinner silicon solar cell because of no aluminum induced bow in the cell. Furthermore, fabrication of a single crystal silicon solar cell with insitu epitaxial p-n junction formation and very highly doped n-type silicon front surface field completely avoids the conventional dopant diffusion step and one screen printing step, thus enabling a cheaper manufacturing process.
    Type: Application
    Filed: December 17, 2013
    Publication date: July 3, 2014
    Applicant: Crystal Solar, Inc.
    Inventors: Tirunelveli S. Ravi, Ashish Asthana
  • Patent number: 8673081
    Abstract: An epitaxial reactor enabling simultaneous deposition of thin films on a multiplicity of wafers is disclosed. During deposition, a number of wafers are contained within a wafer sleeve comprising a number of wafer carrier plates spaced closely apart to minimize the process volume. Process gases flow preferentially into the interior volume of the wafer sleeve, which is heated by one or more lamp modules. Purge gases flow outside the wafer sleeve within a reactor chamber to minimize deposition on the walls of the chamber. In addition, sequencing of the illumination of the individual lamps in the lamp module may further improve the linearity of variation in deposition rates within the wafer sleeve. To improve uniformity, the direction of process gas flow may be varied in a cross-flow configuration. Combining lamp sequencing with cross-flow processing in a multiple reactor system enables high throughput deposition with good film uniformities and efficient use of process gases.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: March 18, 2014
    Assignee: Crystal Solar, Inc.
    Inventors: Visweswaren Sivaramakrishnan, Kedarnath Sangam, Tirunelveli S. Ravi, Andrzej Kaszuba, Quoc Vinh Truong
  • Patent number: 8609451
    Abstract: Fabrication of a single crystal silicon solar cell with an insitu epitaxially deposited very highly doped p-type silicon back surface field obviates the need for the conventional aluminum screen printing step, thus enabling a thinner silicon solar cell because of no aluminum induced bow in the cell. Furthermore, fabrication of a single crystal silicon solar cell with insitu epitaxial p-n junction formation and very highly doped n-type silicon front surface field completely avoids the conventional dopant diffusion step and one screen printing step, thus enabling a cheaper manufacturing process.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: December 17, 2013
    Assignee: Crystal Solar Inc.
    Inventors: Tirunelveli S. Ravi, Ashish Asthana
  • Publication number: 20130056044
    Abstract: Photovoltaic modules including a plurality of solar cells bonded to a module back sheet are described herein, wherein each solar cell includes a superstrate bonded to a front side of a photovoltaic device to facilitate handling of very thin photovoltaic devices during fabrication of the module. Modules may also include module front sheets and the solar cells may include bottom sheets. The modules may be made of flexible materials, and may be foldable. Fabrication processes include tabbing photovoltaic devices prior to attaching the individual superstrates.
    Type: Application
    Filed: August 3, 2012
    Publication date: March 7, 2013
    Applicant: Crystal Solar, Inc.
    Inventors: Kramadhati V. Ravi, Tirunelveli S. Ravi, Ashish Asthana, Somnath Nag
  • Publication number: 20120288990
    Abstract: Fabrication of a single crystal silicon solar cell with an insitu epitaxially deposited very highly doped p-type silicon back surface field obviates the need for the conventional aluminum screen printing step, thus enabling a thinner silicon solar cell because of no aluminum induced bow in the cell. Furthermore, fabrication of a single crystal silicon solar cell with insitu epitaxial p-n junction formation and very highly doped n-type silicon front surface field completely avoids the conventional dopant diffusion step and one screen printing step, thus enabling a cheaper manufacturing process.
    Type: Application
    Filed: March 19, 2012
    Publication date: November 15, 2012
    Applicant: Crystal Solar, Inc.
    Inventors: Tirunelveli S. Ravi, Ashish Asthana
  • Publication number: 20120040487
    Abstract: Methods of fabricating metal wrap through solar cells and modules for thin silicon solar cells, including epitaxial silicon solar cells, are described. These metal wrap through solar cells have a planar back contact geometry for the base and emitter contacts. Fabrication of a metal wrap through solar cell may comprise: providing a photovoltaic device attached at the emitter side of the device to a solar glass by an encapsulant, the device including busbars on the device emitter; forming vias through the device base and emitter, the vias terminating in the busbars; depositing a conformal dielectric film over the surface of the vias and the back surface of the base; removing portions of the conformal dielectric film from the ends of the vias for exposing the busbars and from field areas of the base; and forming separate electrical contacts to the busbars and the field areas on the back surface of the solar cell.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 16, 2012
    Applicant: Crystal Solar, Inc.
    Inventors: Ashish Asthana, Tirunelveli S. Ravi, Kramadhati V. Ravi, Somnath Nag
  • Patent number: 8030119
    Abstract: A method for fabricating a photovoltaic (PV) cell panel wherein all PV cells are formed simultaneously on a two-dimensional array of monocrystalline silicon mother wafers affixed to a susceptor is disclosed. Porous silicon separation layers are anodized in the surfaces of the mother wafers. The porous film is then smoothed to form a suitable surface for epitaxial film growth. An epitaxial reactor is used to grow n- and p-type films forming the PV cell structures. Contacts to the n- and p-layers are deposited, followed by gluing of a glass layer to the PV cell array. The porous silicon film is then separated by exfoliation in a peeling motion across all the cells attached together above, followed by attaching a strengthening layer on the PV cell array. The array of mother wafers may be reused multiple times, thereby reducing materials costs for the completed solar panels.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: October 4, 2011
    Assignee: Crystal Solar, Inc.
    Inventors: Tirunelveli S. Ravi, Ananda H. Kumar, Ashish Asthana
  • Publication number: 20110056532
    Abstract: A method for fabricating a photovoltaic (PV) cell panel wherein each of a plurality of silicon donor wafers has a separation layer formed on its upper surface, e.g., porous anodically etched silicon. On each donor wafer, a PV cell is then partially completed including at least part of inter-cell interconnect, after which plural donor wafers are laminated to a backside substrate or frontside. All of the donor wafers are then separated from the partially completed PV cells in an exfoliation process, followed by simultaneous completion of the remaining PV cell structures on PV cells. Finally, a second lamination to a frontside glass or a backside panel completes the PV cell panel. The separated donor wafers may be reused in forming other PV cells. Use of epitaxial deposition to form the layers of the PV cells enables improved dopant distributions and sharper junction profiles for improved PV cell efficiency.
    Type: Application
    Filed: September 9, 2009
    Publication date: March 10, 2011
    Applicant: CRYSTAL SOLAR, INC.
    Inventors: Tirunelveli S. Ravi, Ananda Kumar, Kramadhati V. Ravi
  • Publication number: 20100215872
    Abstract: An epitaxial reactor enabling simultaneous deposition of thin films on a multiplicity of wafers is disclosed. During deposition, a number of wafers are contained within a wafer sleeve comprising a number of wafer carrier plates spaced closely apart to minimize the process volume. Process gases flow preferentially into the interior volume of the wafer sleeve, which is heated by one or more lamp modules. Purge gases flow outside the wafer sleeve within a reactor chamber to minimize wall deposition. In addition, sequencing of the illumination of the individual lamps in the lamp module may further improve the linearity of variation in deposition rates within the wafer sleeve. To improve uniformity, the direction of process gas flow may be varied in a cross-flow configuration. Combining lamp sequencing with cross-flow processing in a multiple reactor system enables high throughput deposition with good film uniformities and efficient use of process gases.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: CRYSTAL SOLAR, INC.
    Inventors: Visweswaren Sivaramakrishnan, Kedarnath Sangam, Tirunelveli S. Ravi, Andrzej Kaszuba, Quoc Vinh Truong
  • Publication number: 20100108130
    Abstract: A design and manufacturing method for an interdigitated backside contact photovoltaic (PV) solar cell less than 100 ?m thick are disclosed. A porous silicon layer is formed on a wafer substrate. Portions of the PV cell are then formed using diffusion, epitaxy and autodoping from the substrate. All backside processing of the solar cell (junctions, passivation layer, metal contacts to the N+ and P+ regions) is performed while the thin epitaxial layer is attached to the porous layer and substrate. After backside processing, the wafer is clamped and exfoliated. The front of the PV cell is completed from the region of the wafer near the exfoliation fracture layer, with subsequent removal of the porous layer, texturing, passivation and deposition of an antireflective coating. During manufacturing, the cell is always supported by either the bulk wafer or a wafer chuck, with no processing of bare thin PV cells.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Applicant: Crystal Solar, Inc.
    Inventor: Kramadhati V. Ravi
  • Publication number: 20100108134
    Abstract: A design and manufacturing method for a photovoltaic (PV) solar cell less than 100 ?m thick are disclosed. A porous silicon layer is formed on a wafer substrate. Portions of the PV cell are then formed using diffusion, epitaxy and autodoping from the substrate. All front side processing of the solar cell (junctions, passivation layer, anti-reflective coating, contacts to the N+-type layer) is performed while the thin epitaxial layer is attached to the porous layer and substrate. The wafer is then clamped and exfoliated. The back side of the PV cell is completed from the region of the wafer near the exfoliation fracture layer, with subsequent removal of the porous layer, passivation, patterning of contacts, deposition of a conductive coating, and contacts to the P+-type layer.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Applicant: Crystal Solar, Inc.
    Inventor: Kramadhati V. Ravi
  • Publication number: 20090227063
    Abstract: A method for fabricating a photovoltaic (PV) cell panel wherein all PV cells are formed simultaneously on a two-dimensional array of monocrystalline silicon mother wafers affixed to a susceptor is disclosed. Porous silicon separation layers are anodized in the surfaces of the mother wafers. The porous film is then smoothed to form a suitable surface for epitaxial film growth. An epitaxial reactor is used to grow n- and p-type films forming the PV cell structures. Contacts to the n- and p-layers are deposited, followed by gluing of a glass layer to the PV cell array. The porous silicon film is then separated by exfoliation in a peeling motion across all the cells attached together above, followed by attaching a strengthening layer on the PV cell array. The array of mother wafers may be reused multiple times, thereby reducing materials costs for the completed solar panels.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 10, 2009
    Applicant: Crystal Solar, Inc.
    Inventors: Tirunelveli S. Ravi, Ananda H. Kumar, Ashish Asthana