Abstract: A method and apparatus for measuring a melt back of a seed in a boule are provided. The method includes lifting a boule once it has been produced using an actuating device onto a support table to automatically manipulate the boule from a furnace to the support table. The melt back of the seed is then automatically measured using a vision system that is installed on an imaging device disposed below the boule.
Abstract: A method of producing a crystalline material is provided that may include providing a crystal growth apparatus comprising a chamber, a hot zone, and a muffle. The hot zone may be disposed within the chamber and include at least one heating system, at least one heat removal system, and a crucible containing feedstock. Additionally, the method may include providing a muffle that surrounds at least two sides of the crucible to ensure uniform temperature distribution through the feedstock during crystal growth to allow the crystalline material to be grown with a square or rectangular shaped cross section.
Type:
Grant
Filed:
April 27, 2020
Date of Patent:
May 30, 2023
Assignee:
CRYSTAL SYSTEMS, LLC
Inventors:
Frederick Schmid, Cody Riopel, Hui Zhang
Abstract: A method for producing a crystalline material in a crucible in a crystal growth apparatus is disclosed. The method comprises, in part, the step of determining the amount of solidified material present in a partially solidified melt produced during the growth phase using at least one laser positioned at a height above the crucible. A crystal growth apparatus comprising the laser is also disclosed.
Abstract: To reduce the heat input to the bottom of the crucible and to control heat extraction independently of heat input, a shield can be raised between a heating element and a crucible at a controlled speed as the crystal grows. Other steps could include moving the crucible, but this process can avoid having to move the crucible. A temperature gradient is produced by shielding only a portion of the heating element; for example, the bottom portion of a cylindrical element can be shielded to cause heat transfer to be less in the bottom of the crucible than at the top, thereby causing a stabilizing temperature gradient in the crucible.
Type:
Application
Filed:
March 1, 2011
Publication date:
June 23, 2011
Applicant:
GT CRYSTAL SYSTEMS, LLC
Inventors:
Frederick SCHMID, Chandra P. KHATTAK, David B. JOYCE
Abstract: A method for minimizing unwanted ancillary reactions in a vacuum furnace used to process a material, such as growing a crystal. The process is conducted in a furnace chamber environment in which helium is admitted to the furnace chamber at a flow rate to flush out impurities and at a predetermined pressure to achieve thermal stability in a heat zone, to minimize heat flow variations and to minimize temperature gradients in the heat zone. During cooldown helium pressure is used to reduce thermal gradients in order to increase cooldown rates.
Type:
Application
Filed:
September 1, 2010
Publication date:
March 3, 2011
Applicant:
GT CRYSTAL SYSTEMS, LLC
Inventors:
Frederick Schmid, David B. Joyce, John Brouillette, Daniel P. Betty, Ryan Philpott