Patents Assigned to CRYSTALVUE MEDICAL CORPORATION
  • Patent number: 12232808
    Abstract: An optotype calibration method is disclosed. The optotype calibration method includes steps of: (a) when a first optotype and a second optotype located outside an observable area, moving the observable area from an original position until the first optotype or the second optotype appears in the observable area; (b) adjusting a focus mechanism to make the first optotype and the second optotype close to each other; (c) moving the observable area back to the original position; and (d) repeating the steps (a)˜(c) until the first optotype and the second optotype align with each other.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: February 25, 2025
    Assignee: Crystalvue Medical Corporation
    Inventors: Chun Nan Lin, Kun Cheng Hsieh
  • Publication number: 20230404403
    Abstract: An optical detection system capable of providing auxiliary light source projection including an optical detection apparatus and an optical module is disclosed. The optical module and the optical detection apparatus are combined with each other in a specific combination type. The specific combination type can be a direct integration type, a bending type, a foldable type, a low height type or an attachable type. The optical module is used to provide additional auxiliary light source projection to improve a condition for testee to gaze and observe a pattern. The optical module includes a light source, a lens set and a reflecting mirror. The light source can be designed as different types of multiple light sources, such as an opposite-direction type multiple light sources or a ring type multiple light sources, to provide a uniform light source.
    Type: Application
    Filed: May 9, 2023
    Publication date: December 21, 2023
    Applicant: Crystalvue Medical Corporation
    Inventors: Yen-Jen CHANG, William WANG, Che-Liang TSAI
  • Patent number: 11181421
    Abstract: A spectrometer is disclosed. The spectrometer includes a fiber input, a collimator lens, a rotating shaft, a grating, a focal lens and a focal plane which have arranged in order. A broadband incident light of the fiber input becomes a first parallel beam through the collimator lens and separated by the grating into multiple parallel beams of different wavelengths and then focused by the focal lens to emit an output beams to an imaging position on the focal plane. The spectrometer can rotate the collimator lens and fiber input to change the imaging position on the focal plane.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: November 23, 2021
    Assignee: Crystalvue Medical Corporation
    Inventors: William Wang, Che-Liang Tsai, Chung-Cheng Chou
  • Patent number: 10325368
    Abstract: An optical measuring apparatus and an operating method thereof are disclosed. The optical measuring apparatus includes a light source, a carrier chip, a light sensor, an analyzing chip and a display. Samples are uniformly distributed on the carrier chip. The light source emits sensing lights toward the carrier chip. The light sensor receives the sensing lights passing through the carrier chip at a plurality of times to obtain a plurality of images corresponding to the plurality of times respectively. The analyzing chip is coupled to the light sensor. The analyzing chip analyzes the object number and distribution variation with time in the sample according to the plurality of images corresponding to the plurality of times and estimates intrinsic characteristics of the object in the sample accordingly. The display is coupled to the analyzing chip. The display displays the intrinsic characteristics of the object in the sample.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: June 18, 2019
    Assignee: Crystalvue Medical Corporation
    Inventors: Long Hsu, William Wang, Cheng-Hsien Liu, Po-Chen Shih, Ting-Sheng Shih, Cheng-En Liu, Chung-Yu Chou, Chung-Cheng Chou
  • Patent number: 10300243
    Abstract: A catheter apparatus includes a replaceable module, a main body portion and a sensing module. The main body portion includes a tube, a urine guide opening and an elastic unit. The replaceable module includes a control unit. A first terminal of the tube is coupled to the replaceable module and a second terminal of the tube is inserted into the bladder. The urine guide opening is disposed at the second terminal of the tube and used to guide urine into the tube when the second terminal of the tube is inserted into the bladder. The elastic unit is disposed at the second terminal of the tube and coupled to the control unit. The sensing module is coupled to the control unit and used to sense whether the second terminal of the tube is inserted to the correct position in the bladder and transmit sensing result to the control unit.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: May 28, 2019
    Assignee: CRYSTALVUE MEDICAL CORPORATION
    Inventors: William Wang, Meng-Shin Yen, Chung-Cheng Chou, Chung-Ping Chuang
  • Patent number: 10088429
    Abstract: A measurement apparatus used to measure an object is disclosed. The measurement apparatus includes at least one sensing unit, a first optical module, a second optical module, a data processing unit and at least one prompting unit. The at least one sensing unit is disposed near the object to perform a contact or proximity sensing on the object. The first optical module is disposed near the object and adjacent to the at least one sensing unit. The first optical module includes at least one lens unit. The second optical module and the object are disposed at opposite sides of the first optical module. The second optical module includes a light source and at least one optical component. The data processing unit is coupled to at least one sensing unit. The at least one prompting unit is coupled to the data processing unit.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: October 2, 2018
    Assignee: Crystalvue Medical Corporation
    Inventors: William Wang, Meng-Shin Yen, Chung-Cheng Chou, Chung-Ping Chuang
  • Patent number: 10034604
    Abstract: An optical measuring apparatus includes a first light source, a second light source and a switching unit. The first light source is used to emit a first light toward a first direction. The second light source is used to emit a second light toward a second direction. The switching unit selectively switches to a first mode or a second mode. When the switching unit switches to the first mode, it blocks the second light and let the first light emitted to an aiming region on eyeball to perform an optical aiming and determine an eye axis center position on the eyeball; when the switching unit switches to the second mode, the switching unit changes the second light from the second direction to the first direction to let the second light emitted to the eye axis center position on the eyeball to perform an optical measurement.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: July 31, 2018
    Assignee: Crystalvue Medical Corporation
    Inventors: William Wang, Meng-Shin Yen, Chung-Cheng Chou, Chung-Ping Chuang
  • Patent number: 9833135
    Abstract: An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes a first light source module, a second light source module, and an interference module. The first light source module is formed by a laser light source and lens units and used to emit a first light signal. The second light source module is formed by fiber units and lens units. The second light source module is coupled to the first light source module in series. The second light source module is used to receive a first light signal and emit a second light signal. The interference module is coupled to the second light source module and used to receive the second light signal and provide a first incident light and a second incident light to an object to be detected and a reference mirror respectively.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: December 5, 2017
    Assignees: Crystalvue Medical Corporation
    Inventors: William Wang, Chung-Ping Chuang, Meng-Shin Yen, Chung-Cheng Chou, Sheng-Lung Huang, Kuang-Yu Hsu, Chien-Chung Tsai, Tuan-Shu Ho
  • Patent number: 9603518
    Abstract: An optical measuring device is provided. An actuator of a reference mirror set drives a reference mirror to move back and forth at a scan velocity. A first light source module transmits a first light beam to an optical coupling module transmitting two parts of the first light beam respectively to an examinee object and the reference mirror set. The first light beam then is reflected by the examinee object and reference mirror set and then transmitted to the optical coupling module and the processing unit. The second light source module transmits a second light beam to the examinee object. Then the second light beam is reflected and then transmitted to the second sensing unit. The second sensing unit provides a sensing signal to the processing unit which accordingly provides a value of the relative velocity. The thickness is calculated according to the relative velocity and the scan velocity.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: March 28, 2017
    Assignee: CRYSTALVUE MEDICAL CORPORATION
    Inventors: Kuo-Jen Wang, Chun-Nan Lin
  • Patent number: 9557155
    Abstract: An optical coherence tomography apparatus includes a light source, a light coupling module, and an optical path difference generating module. The light source emits a coherent light. The light coupling module divides the coherent light into a first incident light and a second incident light. The first incident light is emitted to an item to be inspected and a first reflected light is generated. The second incident light is emitted to the optical path difference generating module, a second reflected light is generated according to the second incident light by the optical path difference generating module through changing the transparent/reflection properties of at least one optical devices of the optical path difference generating module, so that there is a optical path difference between the first reflected light and the second reflected light.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 31, 2017
    Assignee: CRYSTALVUE MEDICAL CORPORATION
    Inventors: Chung-Cheng Chou, William Wang
  • Patent number: 9551850
    Abstract: A light source module of an optical apparatus is disclosed. The light source module includes a laser pump unit, a lens unit, and a fiber unit. The laser pump unit generates a laser source. The lens unit converts the laser source into a condensed beam. The fiber unit receives the condensed beam and emits an optical signal. The light source module can achieve effects of low cost, large bandwidth, high resolution, and high stability with well-designed pump power of the laser pump unit, and length, doping material, and core size of the fiber unit.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: January 24, 2017
    Assignees: CRYSTALVUE MEDICAL CORPORATION
    Inventors: William Wang, Chung-Ping Chuang, Meng-Shin Yen, Chung-Cheng Chou, Sheng-Lung Huang, Kuang-Yu Hsu, Chien-Chung Tsai, Tuan-Shu Ho
  • Patent number: 9451879
    Abstract: An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes an image capturing unit, a data comparing unit, a detection unit, a location determining unit, and a data output unit. The image capturing unit captures images of different portions of a face of a person to be tested to obtain a plurality of face images. The data comparing unit compares the plurality of face images with a built-in database. The detection unit detects on an eye of the person to be tested. The location determining unit automatically determines whether the eye detected by the detection unit is left-eye or right-eye. The data output unit selectively outputs a detection result of the detection unit, a comparing result of the data comparing unit, and/or a determining result of the location determining unit.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: September 27, 2016
    Assignee: CRYSTALVUE MEDICAL CORPORATION
    Inventors: William Wang, Chung-Ping Chuang, Meng-Shin Yen, Chung-Cheng Chou
  • Publication number: 20160256052
    Abstract: The present invention provides an intraocular pressure detecting device, which includes: a sampling device, a comparison device and a detecting device. The sampling device includes an opening window, an imaging unit and a puffing unit. The opening window has a through hole. The imaging unit forms an imaging optical path directly with the eyeball, via a through hole of the opening window. In addition, the puffing device forms a puffing path together with the through hole of the opening window towards the eyeball. Moreover, the comparison device includes a reflecting mirror and a driving device, and the driving device drives the reflecting mirror to generate a displacement. The detecting device is in connection with the sampling device and the comparison device. The detecting device forms a detecting optical path with the eyeball by means of a through hole of the opening window. Also, the detecting device forms a comparison optical path with the reflection mirror of the comparison device.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 8, 2016
    Applicant: CRYSTALVUE MEDICAL CORPORATION
    Inventors: Wen Wei HUANG, Chung Ping CHUANG
  • Patent number: 9427155
    Abstract: The optical apparatus includes an optical measurement module, a central processing module, and an air-puff module. The air-puff module is used for generating an air pressure to a surface of the cornea according a blow pattern to cause a deformation of the cornea. The optical measurement module includes a first unit and a second unit. The first unit is used for measuring an intraocular pressure (IOP) of the eye according to the deformation of the cornea. The second unit is used for measuring properties of the cornea in an optical interference way. The central processing module is coupled to the first unit and the second unit and used for receiving and processing the intraocular pressure and the properties of the cornea to provide a result.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 30, 2016
    Assignee: Crystalvue medical corporation
    Inventors: William Wang, Chung-Ping Chuang, Meng-Shin Yen, Chung-Cheng Chou
  • Patent number: 9402541
    Abstract: An optical device for corneal measuring includes a light source module, a first optical module, a second optical module including a reference mirror, a light splitter and an image analysis unit. The light of the light source module is transmitted to the first and second optical modules through the light splitter. The light is transmitted to a cornea through the light splitter and the first optical module and reflected by the cornea to form a first light, the light is transmitted to the reference mirror through the light splitter and reflected by the reference mirror to form a second light. The first and second lights are transmitted to the light splitter and the image analysis unit. The reference mirror moves along a first direction, and when the first light and the second light interfere with each other, a relative optical path length is obtained.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: August 2, 2016
    Assignees: CRYSTALVUE MEDICAL CORPORATION
    Inventors: Sheng-Lung Huang, William Wang, Tuan-Shu Ho, Chung-Ping Chuang, Meng-Shin Yen, Kuang-Yu Hsu, Chien-Chung Tsai, Chung-Cheng Chou
  • Patent number: 9380936
    Abstract: An optical device for corneal measuring includes a light source module, a first optical module, a second optical module including a reference mirror, a light splitter and an image analysis unit. The light of the light source module is transmitted to the first and second optical modules through the light splitter. The light is transmitted to a cornea through the light splitter and the first optical module and reflected by the cornea to form a first light, the light is transmitted to the reference mirror through the light splitter and reflected by the reference mirror to form a second light. The first and second lights are transmitted to the light splitter and the image analysis unit. The reference mirror moves along a first direction, and when the first light and the second light interfere with each other, a relative optical path length is obtained.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 5, 2016
    Assignees: CRYSTALVUE MEDICAL CORPORATION
    Inventors: Sheng-Lung Huang, William Wang, Tuan-Shu Ho, Chung-Ping Chuang, Meng-Shin Yen, Kuang-Yu Hsu, Chien-Chung Tsai, Chung-Cheng Chou
  • Patent number: 9261499
    Abstract: A biochemical detection unit for detecting a sample and a biochemical device having the biochemical detection unit and a releasing unit are provided. The biochemical detection unit includes a photoconductor plate, a receptor, and a resistance sensing component. The receptor specifically binds to the sample so that the illumination projected on the photoconductor plate will change to vary the resistance value of the photoconductor of the photoconductor plate.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: February 16, 2016
    Assignee: Crystalvue Medical Corporation
    Inventors: Chung-Cheng Chou, William Wang
  • Patent number: 9211089
    Abstract: An optical blood glucose detecting apparatus and an operating method thereof are disclosed. The optical blood glucose detecting apparatus includes a detecting module, an assisting and strengthening module, and a data processing module. The detecting module provides an incident optical signal passing through a detected portion of skin surface into a skin interstitial fluid, captures a blood glucose optical reflection message of the skin interstitial fluid, and it interferes the blood glucose optical reflection message and the incident optical signal to generate a detected data. The assisting and strengthening module provides a physical or chemical effect on a tissue region under the detected portion to strengthen the blood glucose optical reflection message. The data processing module processes the detected data to determine a blood glucose concentration.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 15, 2015
    Assignee: Crystalvue Medical Corporation
    Inventors: Meng-Shin Yen, William Wang, Chung-Cheng Chou, Chung-Ping Chuang
  • Patent number: 9121822
    Abstract: A method of operating a portable biochemical testing apparatus is disclosed. The portable biochemical testing apparatus includes a light source module, a sample module, a photoconductive material layer, a touch module, and a control module. At least one sample is disposed in the sample module. The photoconductive material layer is disposed between the sample module and the light source module. The touch module generates a driving signal according to a touch action of the user to drive the light source module to emit a light. When the light is emitted to the photoconductive material layer, the photoconductive material layer will generate a photoelectric driving effect. The at least one sample is affected by the photoelectric driving effect and generates a change corresponding to the touch action.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: September 1, 2015
    Assignee: Crystalvue Medical Corporation
    Inventors: Chung-Cheng Chou, William Wang
  • Patent number: 9119534
    Abstract: An optical apparatus is disclosed. The optical apparatus includes an optical scanning module and a rotation axis module. The optical scanning module is used to provide an optical signal for optical tomography. The rotation axis module and the optical scanning module are integrated. When the rotation axis module rotates, the rotation axis module makes the optical scanning module to perform a rotation scanning process to an object.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: September 1, 2015
    Assignee: Crystalvue Medical Corporation
    Inventors: Meng-Shin Yen, William Wang, Chung-Cheng Chou