Abstract: In various embodiments, a scope-based imaging system is introduced. An optical sensor assembly located at the tip of the scope may include the CMOS sensors, filters, and lenses/mirrors, to perform fluorescence imaging using the scope.
Abstract: In various embodiments, a scope-based imaging system is introduced. An optical sensor assembly located at the tip of the scope may include the CMOS sensors, filters, and lenses/mirrors, to perform fluorescence imaging using the scope.
Abstract: In one embodiment, an imaging system illuminates a surface of tissue with one or more spots of near-infrared (NIR) light within a field of view of a camera of the imaging system. The imaging system captures an image of the one or more spots of NIR light within the field of view of the camera of the imaging system. The imaging system calculates, for each of the one or more spots of NIR light in the captured image, a spot diameter, spot position, or spot shape in the captured image. The imaging system determines a distance between the imaging system and the surface of tissue, based on the calculated spot diameter, spot position, or spot shape of the one or more spots of NIR light in the captured image. The imaging system provides data indicative of the determined distance between the imaging system and the surface of tissue to an electronic display.
Abstract: An imaging system illuminates a portion of a plant with a light source comprising a near-infrared (NIR) light source to cause fluorescent emission by a fluorescent imaging agent absorbed by the plant and distributed within the plant via transpiration. The imaging system receives the fluorescent emission from the illuminated portion of the plant. The imaging system generates a fluorescent image of the portion of the plant from the received fluorescent emission. The imaging system displays, on a display device of the imaging system, the fluorescent image. Based on the fluorescent image, a determination that the plant has a disease or injury can be made.
Abstract: In one aspect, a visible light sensor of an imaging system captures a visible light image of a subject in which a fluorophore is present. The fluorophore has fluorescence emissions in the visible spectrum and in the near-infrared (NIR) spectrum. An NIR sensor of the imaging system captures an NIR image of the subject in which the fluorophore is present. The imaging system forms a combined image of the visible light image and the NIR image, in part by masking pixels of the visible light image with pixels of the NIR image that are associated with the fluorescence emission of the fluorophore in the NIR spectrum. The imaging system provides the combined image to an electronic display for display.
Abstract: In one embodiment, an imaging device determines color information for a portion of organic tissue from one or more captured color images of the tissue. The imaging device identifies one or more optical properties of the portion of tissue based on the determined color information. The imaging device adjusts fluorescence data captured via one or more fluorescence images of the portion of organic tissue. The imaging device provides the adjusted fluorescence data to an electronic display for display.
Abstract: Disclosed herein are methods for preparing ultrapure diaminophenothiasinium compounds with high solubility in solutions, e.g., water, and the compositions provided therefrom.